# Hecke group algebras as degenerate affine Hecke algebras

Florent Hivert<sup>1</sup> Anne Schilling<sup>2</sup> Nicolas M. Thiéry<sup>2,3</sup>

<sup>1</sup>LITIS/LIFAR, Université Rouen, France

<sup>2</sup>University of California at Davis, USA

<sup>3</sup>Laboratoire de Mathématiques d'Orsay, Université Paris Sud, France

FPSAC 2008, Viña del Mar, June 27th, 2008

arXiv:0711.1561v1 [math.RT] arXiv:0804.3781v1 [math.RT]

# It all started at FPSAC 2006, San Diego



# It all started at FPSAC 2006, San Diego



# Coxeter groups

# Definition (Coxeter group W)

Generators :  $(s_i)_{i \in S}$  (simple reflections)

Relations:  $s_i^2 = 1$  and  $\underbrace{s_i s_j \cdots}_{m_{i,i}} = \underbrace{s_j s_i \cdots}_{m_{i,i}}$ , for  $i \neq j$ 

Group algebra:  $\mathbb{C}[W]$ 

Example (Type  $A_n$ : symmetric group  $\mathfrak{S}_{n+1}$ )

Generators:  $(s_i)_{i=1,...,n}$  (elementary transpositions) Relations:

$$egin{aligned} s_i^2 &= 1 & & ext{for all } 1 \leq i \leq n, \ s_i s_j &= s_j s_i & ext{for all } |i-j| > 1, \ s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & ext{for all } 1 \leq i \leq n-1 \end{aligned}$$

# Coxeter groups

## Definition (Coxeter group W)

Generators :  $(s_i)_{i \in S}$  (simple reflections)

Relations:  $s_i^2 = 1$  and  $\underbrace{s_i s_j \cdots}_{m_{i,i}} = \underbrace{s_j s_i \cdots}_{m_{i,i}}$ , for  $i \neq j$ 

Group algebra:  $\mathbb{C}[W]$ 

Example (Type  $A_n$ : symmetric group  $\mathfrak{S}_{n+1}$ )

Generators:  $(s_i)_{i=1,...,n}$  (elementary transpositions)

Relations:

$$egin{aligned} s_i^2 &= 1 & & \text{for all } 1 \leq i \leq n, \\ s_i s_j &= s_j s_i & & \text{for all } |i-j| > 1, \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & & \text{for all } 1 \leq i \leq n-1. \end{aligned}$$

# 0-(Iwahori)-Hecke algebras

# Definition (0-Hecke algebra H(W)(0))

Generators :  $(\pi_i)_{i \in S}$ 

Relations:  $\pi_i^2 = \pi_i$  and  $\underbrace{\pi_i \pi_j \cdots}_{m_{i,i}} = \underbrace{\pi_j \pi_i \cdots}_{m_{i,i}}$  for  $i \neq j$ 

Basis:  $(\pi_w)_{w \in W}$ 

#### Example (Type $A_n$ )

Generators:  $(\pi_i)_{i=1,...,n}$  (adjacent comparators)

Relations:

$$\pi_i^2 = \pi_i$$
 for all  $1 \le i \le n$ ,  $\pi_i \pi_j = \pi_j \pi_i$  for all  $|i - j| > 1$ ,  $\pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$  for all  $1 \le i \le n-1$ 

# 0-(Iwahori)-Hecke algebras

# Definition (0-Hecke algebra H(W)(0))

Generators :  $(\pi_i)_{i \in S}$ 

Relations:  $\pi_i^2 = \pi_i$  and  $\underbrace{\pi_i \pi_j \cdots}_{m_{i,i}} = \underbrace{\pi_j \pi_i \cdots}_{m_{i,i}}$  for  $i \neq j$ 

Basis:  $(\pi_w)_{w \in W}$ 

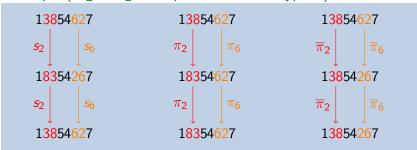
#### Example (Type $A_n$ )

Generators:  $(\pi_i)_{i=1,...,n}$  (adjacent comparators)

Relations:

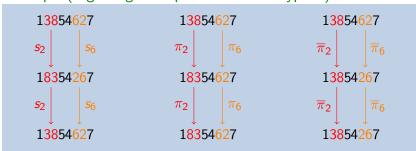
$$\begin{split} \pi_i^2 &= \pi_i & \text{for all } 1 \leq i \leq n, \\ \pi_i \pi_j &= \pi_j \pi_i & \text{for all } |i-j| > 1, \\ \pi_i \pi_{i+1} \pi_i &= \pi_{i+1} \pi_i \pi_{i+1} & \text{for all } 1 \leq i \leq n-1. \end{split}$$

#### Example (Right regular representation for type A)



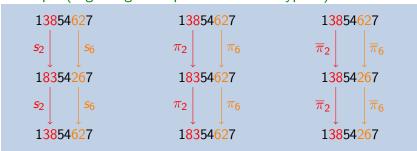
Example (Bubble sort)

#### Example (Right regular representation for type A)



# Example (Bubble sort)

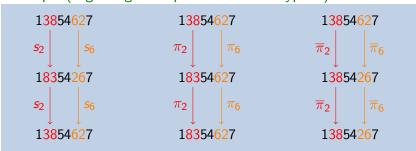
#### Example (Right regular representation for type A)



## Example (Bubble sort)

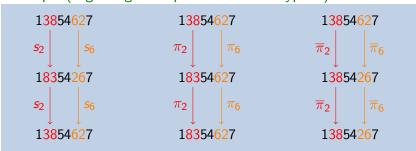
1<mark>8</mark>354627

#### Example (Right regular representation for type A)



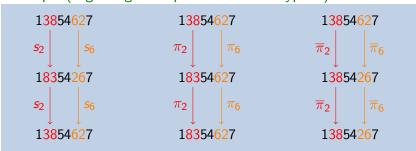
# Example (Bubble sort)

#### Example (Right regular representation for type A)



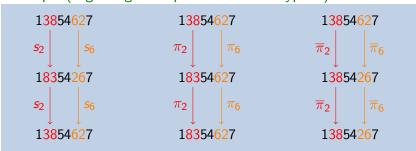
# Example (Bubble sort)

#### Example (Right regular representation for type A)



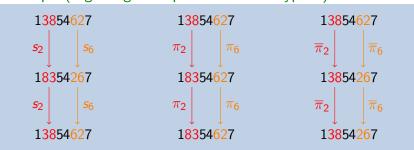
## Example (Bubble sort)

#### Example (Right regular representation for type A)



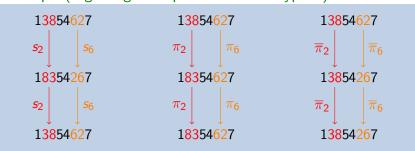
# Example (Bubble sort)

#### Example (Right regular representation for type A)



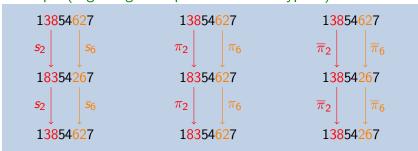
# Example (Bubble sort)

#### Example (Right regular representation for type A)



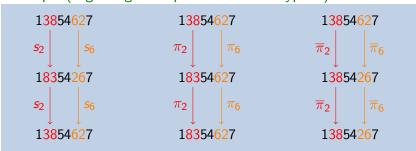
# Example (Bubble sort)

#### Example (Right regular representation for type A)



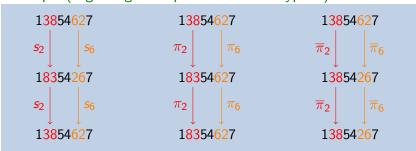
## Example (Bubble sort)

#### Example (Right regular representation for type A)



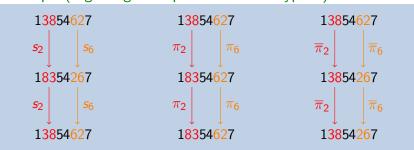
## Example (Bubble sort)

#### Example (Right regular representation for type A)



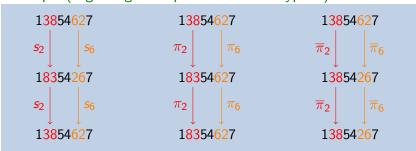
## Example (Bubble sort)

#### Example (Right regular representation for type A)



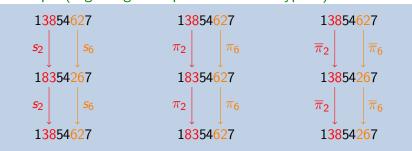
# Example (Bubble sort)

#### Example (Right regular representation for type A)



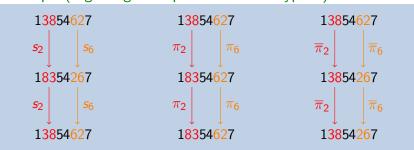
# Example (Bubble sort)

#### Example (Right regular representation for type A)



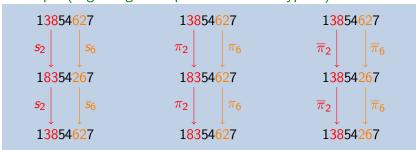
## Example (Bubble sort)

#### Example (Right regular representation for type A)



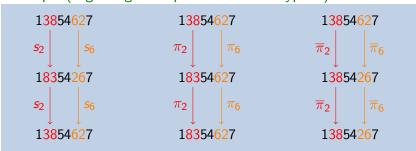
# Example (Bubble sort)

#### Example (Right regular representation for type A)



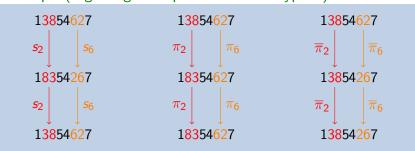
# Example (Bubble sort)

#### Example (Right regular representation for type A)



## Example (Bubble sort)

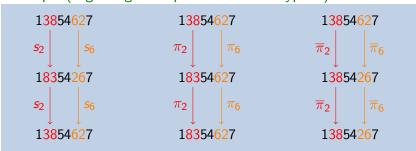
#### Example (Right regular representation for type A)



# Example (Bubble sort)

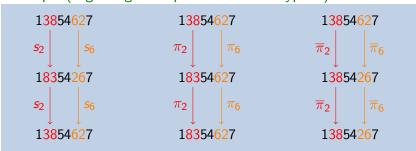
876<mark>5</mark>1342

#### Example (Right regular representation for type A)



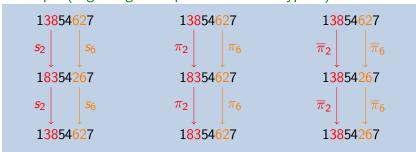
## Example (Bubble sort)

#### Example (Right regular representation for type A)



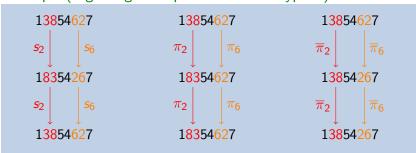
# Example (Bubble sort)

#### Example (Right regular representation for type A)



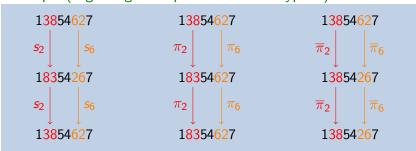
# Example (Bubble sort)

#### Example (Right regular representation for type A)



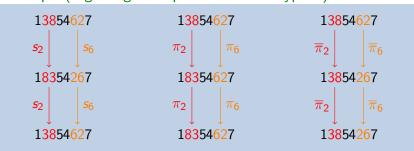
# Example (Bubble sort)

#### Example (Right regular representation for type A)



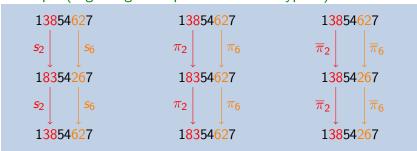
# Example (Bubble sort)

#### Example (Right regular representation for type A)



# Example (Bubble sort)

#### Example (Right regular representation for type A)



# Example (Bubble sort)

# Hecke algebras

Take  $q_1$  and  $q_2$  parameters, and set  $q:=-\frac{q_1}{q_2}$ .

# Definition (Hecke algebra $H(W)(q_1, q_2)$ )

Generators :  $(T_i)_{i \in S}$  Relations:  $(T_i - q_1)(T_i - q_2) = 0$  and  $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$ , for  $i \neq j$  Basis:  $(T_w)_{w \in W}$ 

- At q=1: group algebra  $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At q not 0 nor a root of unity: isomorphic to  $\mathbb{C}[W]$

## Realization of $T_i$ as operator in End( $\mathbb{C}W$ ):

$$T_i := (q_1 + q_2)\pi_i - q_1s$$

# Hecke algebras

Take  $q_1$  and  $q_2$  parameters, and set  $q:=-\frac{q_1}{q_2}$ .

# Definition (Hecke algebra $H(W)(q_1, q_2)$ )

Generators : 
$$(T_i)_{i \in S}$$
 Relations:  $(T_i - q_1)(T_i - q_2) = 0$  and  $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$ , for  $i \neq j$  Basis:  $(T_w)_{w \in W}$ 

- At q=1: group algebra  $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At q not 0 nor a root of unity: isomorphic to  $\mathbb{C}[W]$

Realization of  $T_i$  as operator in End( $\mathbb{C}W$ ):

$$T_i := (q_1 + q_2)\pi_i - q_1s$$

# Hecke algebras

Take  $q_1$  and  $q_2$  parameters, and set  $q:=-\frac{q_1}{q_2}$ .

# Definition (Hecke algebra $H(W)(q_1, q_2)$ )

Generators : 
$$(T_i)_{i \in S}$$
 Relations:  $(T_i - q_1)(T_i - q_2) = 0$  and  $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$ , for  $i \neq j$  Basis:  $(T_w)_{w \in W}$ 

- At q=1: group algebra  $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At q not 0 nor a root of unity: isomorphic to  $\mathbb{C}[W]$

## Realization of $T_i$ as operator in End( $\mathbb{C}W$ ):

$$T_i := (q_1 + q_2)\pi_i - q_1s_i$$

A silly idea during a brainstorm (Thibon, Novelli, H., T., 2003)

Definition (Hecke group algebra HW of a Coxeter group W)

$$HW := \langle (\pi_i, s_i)_{i \in S} \rangle \subset \operatorname{End}(\mathbb{C}W)$$

- Any interesting structure?
- Contains all Hecke algebras by construction
- Type A: dimension and dimension of the radical in the Sloane!

A silly idea during a brainstorm (Thibon, Novelli, H., T., 2003)

Definition (Hecke group algebra HW of a Coxeter group W)

$$HW := \langle (\pi_i, s_i)_{i \in S} \rangle \subset \operatorname{End}(\mathbb{C}W)$$

- Any interesting structure?
- Type A: dimension and dimension of the radical in the Sloane!

A silly idea during a brainstorm (Thibon, Novelli, H., T., 2003)

Definition (Hecke group algebra HW of a Coxeter group W)

$$HW := \langle (\pi_i, s_i)_{i \in S} \rangle \subset \operatorname{End}(\mathbb{C}W)$$

- Any interesting structure?
- Contains all Hecke algebras by construction
- Type A: dimension and dimension of the radical in the Sloane!

A silly idea during a brainstorm (Thibon, Novelli, H., T., 2003)

Definition (Hecke group algebra HW of a Coxeter group W)

$$HW := \langle (\pi_i, s_i)_{i \in S} \rangle \subset \operatorname{End}(\mathbb{C}W)$$

- Any interesting structure?
- Contains all Hecke algebras by construction
- Type A: dimension and dimension of the radical in the Sloane!

# The Hecke group algebra of rank 1

$$\begin{aligned} \mathcal{W} &:= \{1,s\} & \quad \mathbb{C}\mathcal{W} := \mathbb{C}.1 \oplus \mathbb{C}.s \\ \mathrm{id} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \pi = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \overline{\pi} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

$$s\pi=\pi, \qquad \pi s=\overline{\pi}, \qquad \overline{\pi}+\pi=1+\overline{\pi}$$
  $\{\mathrm{id},s,\pi\} \qquad \mathrm{or} \qquad \{\mathrm{id},\pi,\overline{\pi}\}$ 

$$(1-s).id = (1-s),$$
  $(1-s).s = -(1-s),$   $(1-s).\pi = 0$ 

# The Hecke group algebra of rank 1

$$\begin{aligned} \mathcal{W} &:= \{1,s\} & \quad \mathbb{C}\mathcal{W} := \mathbb{C}.1 \oplus \mathbb{C}.s \\ \mathrm{id} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \pi = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \overline{\pi} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

#### Relations and some natural bases of HW

$$s\pi=\pi, \qquad \pi s=\overline{\pi}, \qquad \overline{\pi}+\pi=1+s$$
  $\{\mathrm{id},s,\pi\} \qquad \mathrm{or} \qquad \{\mathrm{id},\pi,\overline{\pi}\}$ 

Dimension 1 simple and projective modules

$$(1-s).id = (1-s),$$
  $(1-s).s = -(1-s),$   $(1-s).\pi = 0$ 

## The Hecke group algebra of rank 1

$$\begin{aligned} \mathcal{W} &:= \{1,s\} & \quad \mathbb{C}\mathcal{W} := \mathbb{C}.1 \oplus \mathbb{C}.s \\ \mathrm{id} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \pi = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \overline{\pi} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

#### Relations and some natural bases of HW

$$s\pi=\pi, \qquad \pi s=\overline{\pi}, \qquad \overline{\pi}+\pi=1+s$$
  $\{\mathrm{id},s,\pi\} \qquad \mathrm{or} \qquad \{\mathrm{id},\pi,\overline{\pi}\}$ 

### Dimension 1 simple and projective modules

$$(1-s).id = (1-s),$$
  $(1-s).s = -(1-s),$   $(1-s).\pi = 0$ 

## Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
     Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

# Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
     Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

# Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:

Exactly the Young's ribbon representation of W
 Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

## Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
     Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

## Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
  - Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

## Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
  - Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

## Theorem (H., T., 2005)

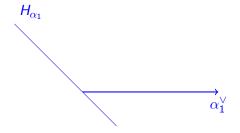
- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
  - Exactly the projective modules of H(W)(0)

## Question (Thibon 2005)

## Theorem (H., T., 2005)

- HW algebra of left antisymmetry preserving operators
- HW\* algebra of left symmetry preserving operators
- Basis of HW:  $\{w\pi_{w'} \mid \mathsf{D}_R(w) \cap \mathsf{D}_L(w') = \emptyset\}$
- Rep. theory governed by the combinatorics of descents
- HW Morita equivalent to the poset algebra of boolean lattice
- Projective & simple modules indexed by parabolic subgroups Restriction of simple:
  - Exactly the Young's ribbon representation of W
  - Exactly the projective modules of H(W)(0)

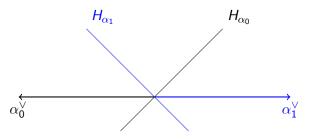
### Question (Thibon 2005)



## Remark (At level 0)

$$\pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

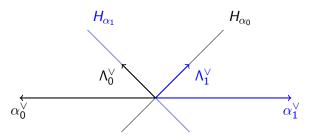
- $\pi_0, \pi_1$  acts transitively on  $\hat{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ . not  $H(\mathring{W})(0)$ !



### Remark (At level 0)

$$\pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

- $\pi_0, \pi_1$  acts transitively on  $\tilde{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !

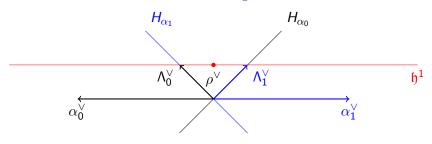


### Remark (At level 0)

• W degenerates trivially to W of type  $A_1$ ;  $W = W \ltimes T$ 

$$\pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

- $\pi_0, \pi_1$  acts transitively on W
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !

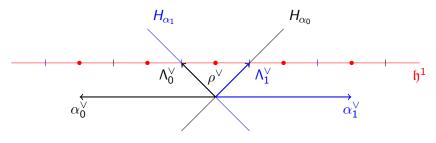


### Remark (At level 0)

• W degenerates trivially to  $\check{W}$  of type  $A_1$ ;  $W=\check{W}\ltimes \mathcal{V}$ 

$$\pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

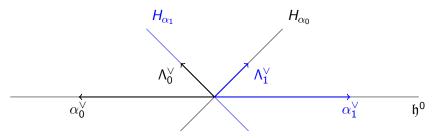
- $\pi_0, \pi_1$  acts transitively on W
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



#### Remark (At level 0)

$$\pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

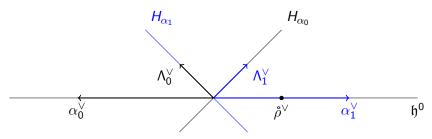
- $\pi_0, \pi_1$  acts transitively on W
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



### Remark (At level 0)

$$w = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

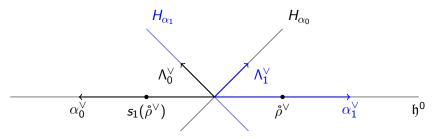
- $\pi_0, \pi_1$  acts transitively on  $\mathring{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



### Remark (At level 0)

$$u = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

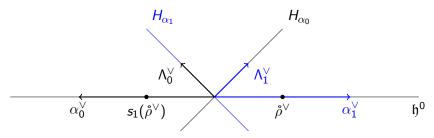
- $\pi_0, \pi_1$  acts transitively on  $\mathring{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



### Remark (At level 0)

$$m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

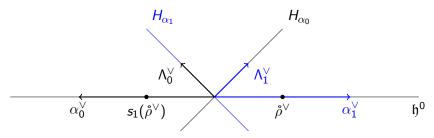
- $\pi_0, \pi_1$  acts transitively on  $\mathring{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



#### Remark (At level 0)

$$\mathrm{id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

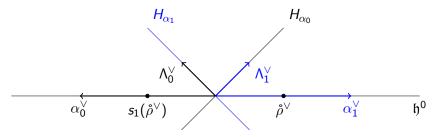
- $\pi_0, \pi_1$  acts transitively on  $\mathring{M}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



#### Remark (At level 0)

$$\mathsf{id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

- $\pi_0, \pi_1$  acts transitively on  $\mathring{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !



## Remark (At level 0)

$$\mathsf{id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \pi_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

- $\pi_0, \pi_1$  acts transitively on  $\mathring{W}$
- H(W)(0) degenerates to  $H\mathring{W}$ , not  $H(\mathring{W})(0)$ !

## Theorem (H.,S.,T. 2008)

W: affine Weyl group

W: finite Weyl group induced by the level 0 action

- W degenerates trivially to W
- H(W)(0) degenerates to  $H\mathring{W}$
- H(W)(q) degenerates to  $H\mathring{W}$ , for q generic
- $\pi_0, \pi_1, \dots, \pi_n$  act transitively on  $\mathring{W}$

## Theorem (H.,S.,T. 2008)

W: affine Weyl group

W: finite Weyl group induced by the level 0 action

- W degenerates trivially to W
- H(W)(0) degenerates to  $H\mathring{W}$
- H(W)(q) degenerates to  $H\mathring{W}$ , for q generic
- $\pi_0, \pi_1, \dots, \pi_n$  act transitively on  $\mathring{W}$

## Theorem (H.,S.,T. 2008)

W: affine Weyl group

W: finite Weyl group induced by the level 0 action

- W degenerates trivially to W
- H(W)(0) degenerates to  $H\mathring{W}$
- H(W)(q) degenerates to  $H\mathring{W}$ , for q generic
- $\pi_0, \pi_1, \dots, \pi_n$  act transitively on  $\mathring{W}$

## Theorem (H.,S.,T. 2008)

W: affine Weyl group

W: finite Weyl group induced by the level 0 action

- W degenerates trivially to W
- H(W)(0) degenerates to  $H\mathring{W}$
- H(W)(q) degenerates to  $H\mathring{W}$ , for q generic
- $\pi_0, \pi_1, \ldots, \pi_n$  act transitively on  $\mathring{W}$

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

## Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 1 4

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

## Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 4

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

## Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

1 2

5 3

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

## Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

## Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2 5

#### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 2 1

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 :

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2 3 1

5 4

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2 3

5 1

#### **Proposition**

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 2

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 5

1 2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

1 !

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

4 5

3 2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

4 1

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 1

3 2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 :

5 2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 :

5

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 !

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5 3 4

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 5 4

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 2 4

5 1

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3

1 5

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

3 2 <u>5</u>

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2 3

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2 5 3

1 4

### **Proposition**

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2

5

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2

5

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

2

Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

5

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

1 5 2

4 3

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

1 5 2

### Proposition

 $\pi_1, \ldots, \pi_n$  can antisort 12345 to 54321 (bubble sort) But not back! (going down the permutohedron)

### Definition (Affine action)

Put the permutation on a circle  $\pi_0$  acts between last and first letter

### Proposition

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 \ge 2 - 3 \implies 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types (*E*<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

#### 1234

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

#### 1234

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types  $(E_8!)$

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

3421

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

4321

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types  $(E_8!)$

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types  $(E_8!)$

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types  $(E_8!)$

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

3124

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

1324

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

2134

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types  $(E_8!)$

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

#### 2134

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

1234

- Type-free induction strategy
- Case by case induction step

  Brute force on computer for the exceptional types ( $E_8$ !)

## Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B: 
$$0 > 2 - 3 \Rightarrow 4$$
  $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$   $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$ 

1234

- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)

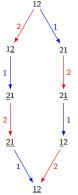
### Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

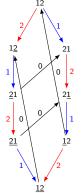
#### Proof

• Type B:  $0 > 2 - 3 \Rightarrow 4$  1 < 2 < 3 < 4 < 4 < 3 < 2 < 1

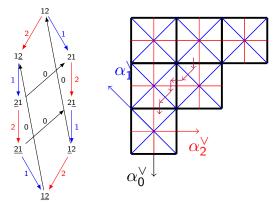
- Type-free induction strategy
- Case by case induction step
   Brute force on computer for the exceptional types (E<sub>8</sub>!)



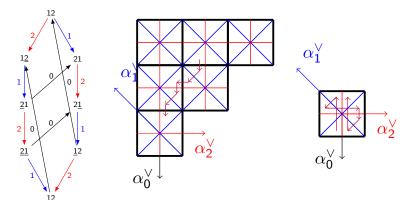
 $\pi_1, \pi_2$  on  $C_2$ 



 $\pi_0, \pi_1, \pi_2$  on  $C_2$ 



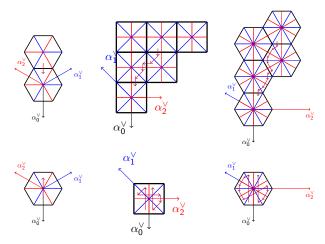
 $\pi_0, \pi_1, \pi_2$  on  $C_2$  Alcove picture at level 1



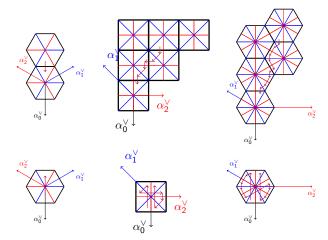
 $\pi_0, \pi_1, \pi_2$  on  $C_2$ 

Alcove picture at level 1

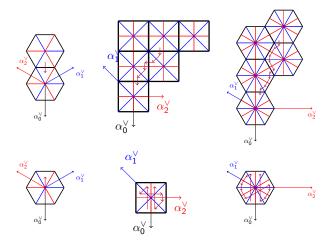
Quotient at level 0 (Steinberg torus)



- Covers all rank 2 affine Weyl groups
- Generalization to  $I_n$ ? Meaning of  $\pi_0$ ?



- Covers all rank 2 affine Weyl groups
- Generalization to  $I_n$ ? Meaning of  $\pi_0$ ?



- Covers all rank 2 affine Weyl groups
- Generalization to  $I_n$ ? Meaning of  $\pi_0$ ?

- $Y^{\lambda^{\vee}} \in H(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathcal{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $\rho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

### Theorem (S.,T., 2008)

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

- $Y^{\lambda^{\vee}} \in \mathsf{H}(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathrm{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $\rho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

### Theorem (S.,T., 2008)

```
Take q non zero and non root of unity, and t:Y^{\lambda^\vee}\mapsto q^{-\operatorname{ht}(\lambda^\vee)}
Then, 
ho_t(\mathsf{H}(W)(q))=\mathsf{H}\mathring{W}
I.e. \mathsf{H}\mathring{W} (non trivial!) quotient of \mathcal{H}(q,t) and of \mathsf{H}(W)(q)
```

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

- $Y^{\lambda^{\vee}} \in \mathsf{H}(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathrm{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $ho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

### Theorem (S.,T., 2008)

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

- $Y^{\lambda^{\vee}} \in \mathsf{H}(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathrm{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $ho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

## Theorem (S., T., 2008)

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

- $Y^{\lambda^{\vee}} \in \mathsf{H}(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathrm{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $ho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

## Theorem (S., T., 2008)

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

- $Y^{\lambda^{\vee}} \in \mathsf{H}(W)(q)$  (analog of translations in W)
- $\mathbb{C}[Y]$ : commutative algebra,  $\mathbb{C}[Y]^{\mathring{W}}$ : center of H(W)(q)
- t: character on  $\mathbb{C}[Y]$ 
  - Central specialization of  $\mathbb{C}[Y]^W$  on t: Quotient  $\mathcal{H}(q,t)$  of  $\mathrm{H}(W)(q)$  of dimension  $|W|^2$
  - Representation  $\rho_t := t \uparrow_{\mathbb{C}[Y]}^{\mathsf{H}(W)(q)}$  of  $\mathsf{H}(W)(q)$  on  $\mathbb{C}\mathring{W}$ : Quotient of  $\mathcal{H}(q,t)$ , generically trivial

### Theorem (S., T., 2008)

- Proof: diagonalization of the action of Y on  $\mathbb{C}\mathring{W}$ , using alcove walks and the intertwining operators  $\tau_i$
- What happens at roots of unity? (Nicolas Borie)

### Conclusion

- Hecke group algebras:
  - Many equivalent definitions
  - Nice structure and representation theory
  - (type A) Connections with NCSF, parking functions
  - Connections with 0-Hecke and affine Hecke algebras
- Where does this structure come from?
- Is it useful?