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Abstract

The SageMath systems provides thousands of mathematical objects
and tens of thousands of operations to compute with them. A
system of this scale requires an infrastructure for writing and
structuring generic code, documentation, and tests that apply
uniformly on all objects within certain realms.

In this talk, we describe the infrastructure implemented in
SageMath. It is based on the standard object oriented features of
Python, together with mechanisms to scale (dynamic classes, mixins,
...) thanks to the rich available semantic (categories, axioms,
constructions). We relate the approach taken with that in other
systems, and discuss work in progress
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Computational Pure Mathematics!

Maple, Mathematica

S50

sagemath.org

e Open source

Based on Python + hundreds of specialized libraries:
Algebra, Combinatorics, Number Theory, Cryptography, ...
Plays well with the Scientific Python stack

200+ regular contributors

Workshops: Sage Days 97!

SageMath notebook inspired the Jupyter notebook
Cython originally developed for SageMath


sagemath.org
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SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250
0 5 1 3 0.333 0.250 0.200

Polynomials:  —9x% + x7 +x® — 13x®> — x3 —3x> —8x + 4
Series: 14 1x + %xz + %x3 + 2—14x4 + ﬁxS +--
Symbolic expressions, equations: cos(x)? + sin(x)? == 1

Finite fields, algebraic extensions, elliptic curves, ...
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Combinatorial objects
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Sage: a large library of mathematical objects and
algorithms

e 1.5M lines of code/doc/tests (Python/Cython)
+ dependencies

e 1k+ types of objets
e 2k+ methods and functions

e 200 regular contributors

Problems

e How to structure this library
e How to guide the user
e How to promote consistency and robustness?

e How to reduce duplication?
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Sage's large hierarchy of classes

Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a hierarchy of abstract classes:

sets

magmas

RN

unital magmas semigroups

inverse unital magmas monoids

N

groups
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sage: m = 3
sage: m"8 == mrmkmmxmrmkmim == ((m"2)"2)"2
True

sage: m = random_matrix(QQ, 4)
sage: m"8 == mrmxmHmmimkmkm == ((m~2)"2) "2
True
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Example: binary powering

sage: m = 3
sage: m"8 == mrmkmmxmrmkmim == ((m"2)"2)"2
True

sage: m = random_matrix(QQ, 4)
sage: m"8 == mrmxmHmmimkmkm == ((m~2)"2) "2
True

e Complexity: O(log(k)) instead of O(k)!

e We would want a single generic implementation!
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e Square matrices form a semigroup
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Example: binary powering Il

Algebraic realm

e Semigroup:
a set S endowed with an associative binary internal law *
e The integers form a semigroup

e Square matrices form a semigroup

We want to

e Implement pow_exp(x,k)
e Specify that
e if x is an element of a semigroup
e then x¥ can be computed with pow_exp (x,k)

What happens if

e x is an element of a group? of a finite group?
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e Provide generic implementations of those operations
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e Specify in which realm each object is
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Selection mechanism

We want

Design a hierarchy of realms and specify the operations there

Provide generic implementations of those operations

Specify in which realm they are valid

Specify in which realm each object is

We need a selection mechanism:

e to resolve the call f(x)

e by selecting the most specific implementation of f
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Designing a hierarchy of realms for mathematics

In general
Hard problem: isolate the proper business concepts

In mathematics

e “Few" fundamental concepts:
e basic operations/structure: €, 4, *, cardinality, topology, ...
e axioms: associative, finite, compact, ...
e constructions: cartesian product, quotients, ...
e Concepts known by the users
e All the richness comes from combining those few concepts to
form many realms:
groups, fields, semirings, lie algebras, ...
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A hierarchy of realms based on mathematical categories

A robust hierarchy based on a century of abstract algebra
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Pioneers 1980- |

Axiom, Aldor, MuPAD

e Specific language
e Selection mechanism: “object oriented programming”

e Hierarchy of “abstract classes” modeling the mathematical
categories

Example

category Semigroups:
category Magmas;

intpow := proc(x, k) ...
// other methods



Pioneers

Pioneers 1980- I
GAP

e Specific language

e One filter per fundamental concept:
IsMagma(G), IsAssociative(G), ...

e InstallMethod(Operation, filters, method)

e Method selection according to the filters that are know to be
satisfied by x

e Implicit modeling of the hierarchy

Example

powExp := function(n, k) ...

InstallMethod(pow, [IsMagma, IsAssociative], powExp)
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Related developments

Focal (Certified CAS)

e Species

MathComp (Proof assistant)

e Canonical structures

MMT (Knowledge management)
e E.g. LATIN’s theories

C3 under control!

Summary
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Implementation in Sage (2008-)
Strategical choices
e A standard language (Python)

e Selection mechanism: object oriented programming

Specific features

Distinction Element/Parent (as in Magma)

Morphisms

Functorial constructions

e Axioms

Constraints

e Partial compilation (Cython), serialization
e Multiple inheritance with Python / Cython

e Scaling!
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The standard Python Object Oriented approach

Abstract classes for elements

class MagmaElement:
@abstract_method
def __mul__(x,y):

class SemigroupElement (MagmaElement) :
def __pow__(x,k): ...

A concrete class

class MySemigroupElement (SemigroupElement) :
# Constructor, data structure, ...
def __mul__(x,k): ...
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Standard OO: classes for parents

Abstract classes

class Semigroup(Magma) :
Q@abstract_method
def semigroup_generators(self):
def cayley_graph(self): ...

A concrete class

class MySemigroup(Semigroup) :
def semigroup_generators(self): ...
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Standard OO: hierarchy of abstract classes

class Set: ...
class SetElement: ...
class SetMorphism: ...

class Magma (Set): ...
class MagmaFElement (SetElement): ...
class MagmaMorphism(SetMorphism): ...

class Semigroup (Magma) : ...

class SemigroupElement (MagmaElement): ...
def __pow__(self, k): ...

class SemigroupMorphism(MagmaMorphism): ...



SageMath

Genericity and selection mechanisms Pioneers In SageMath

Scaling

C3 under control!

Standard OO: hierarchy of abstract classes

class Set: ...
class SetElement: ...
class SetMorphism: ...

class Magma (Set): ...
class MagmaFElement (SetElement): ...
class MagmaMorphism(SetMorphism): ...

class Semigroup (Magma) : ...

class SemigroupElement (MagmaElement): ...

def __pow__(self, k): ...

class SemigroupMorphism(MagmaMorphism): .

Hmm, this code smells, doesn't it?

e How to avoid duplication?

Summary
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Sage's approach: categories and mixin classes
Categories

class Semigroups(Category) :
def super_categories():
return [Magmas()]
class ParentMethods:
class ElementMethods: ...
def __pow__(x, K): ...
class MorphismMethods:

A concrete class

class MySemigroup(Parent) :
def __init__(self):
Parent.__init__(self, category=Semigroups())
def semigroup_generators(self): ...
class Element:
# constructor, data structure
def __mul__(x, y): ...

Summary
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Usage

sage: S = MySemigroup()
sage: S.category()

Category of semigroups
sage: S.cayley_graph()

sage: S.__class__.mro()

[<class ’MySemigroup_with_category’>,
<type ’sage.structure.parent.Parent’>,
<class ’Semigroups.parent_class’>,
<class ’Magmas.parent_class’>,
<class ’Sets.parent_class’>, .. |
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Usage

sage: S = MySemigroup()
sage: S.category()

Category of semigroups
sage: S.cayley_graph()

sage: S.__class__.mro()

[<class ’MySemigroup_with_category’>,
<type ’sage.structure.parent.Parent’>,
<class ’Semigroups.parent_class’>,
<class ’Magmas.parent_class’>,
<class ’Sets.parent_class’>, ...]

Generic tests
sage: TestSuite(S).run(verbose=True)
running ._test_associativity() . . . pass

running ._test_cardinality() . . . pass
running ._test_elements_eq_transitive() . . . pass
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How does this work?

Dynamic construction, from the mixins, of:

e three hierarchies of abstract classes:

set set element
magma magma element
unital magma semigroup unital magma element semigroup element

T i

C3 under control! Summary

set morphism

magma morphism

2N

unital magma morphism  semigroup morphism

|

inverse unital magma monoid inverse unital magma element monoid element inverse unital magma morphism monoid morphism

N N

group group element

e the concrete classes for parents and elements

N

group morphism
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Summary
Explicit modeling of

e Elements, Parents, Morphisms, Homsets
e Categories: bookshelves about a given realm:
e Semantic information

e Mixins for parents, elements, morphisms, homsets:
Generic Code, Documentation, Tests

Method selection mechanism

e Standard Object Oriented approach
e With a twist: classes constructed dynamically from mixins
Isn’t this gross overdesign?

e Deviation from standard Python, additional complexity

e Higher learning curve
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It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

sage: ¢ = C.an_element(); c
(1, 1.00000000000000, 0*Z(3))
sage: (c+c)”3

(8, 8.00000000000000, 0*Z(3))

sage: C.category()
Category of Cartesian products of commutative rings



Scaling

It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

sage: ¢ = C.an_element(); c
(1, 1.00000000000000, 0*Z(3))
sage: (c+c)”3

(8, 8.00000000000000, 0*Z(3))

sage: C.category()
Category of Cartesian products of commutative rings

sage: C.category() .super_categories()

[Category of commutative rings,

Category of Cartesian products of distributive magmas and additive n
Category of Cartesian products of monoids,

Category of Cartesian products of commutative magmas,

Category of Cartesian products of commutative additive groups]

sage: len(C.categories())

44
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Taming the combinatorial explosion

Categories for groups:

sets

magmas

7N\

unital magmas semigroups

| |

inverse unital magmas monoids

N

groups
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Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
/ \
semigroups unital magmas
g |
finite semigroups monoids inverse unital magmas
finite monoids groups

finite groups
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Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
associat% \
semigroups unital magmas
unital
finite semigroups monoids inverse unital magmas
inverse
finite monoids groups

finite groups
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Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
associat% \
semigroups unital magmas
L |
finite semigroups monoids inverse unital magmas
inverse

finite monoids groups

/

finite groups

Implemented categories: 11 out of 14
Explicit inheritance: 1 + 9 out of 15
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Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:
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Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas
fg maguas comn magnas semigroups unital magnas
finite semigroups £g semigroups monoids inverse unital maguas
finite fg semigroups finite monoids comn monoids

finite groups
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Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas

fg maguas comm magnas semigroups unital magnas

— —
_— e
ups | fg semigroups wmgs— W
— ]
finite fg semigroups finite monoids comm monoids
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Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas

£g nagmas comn magnas semigroups unital magmas

= _
— ] AN
e = =
———— —

-

finite groups

Implemented categories: 17 out of ~ 54
Explicit inheritance: 1 4 15 out of 32



SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

All implemented categories for fields:

Implemented categories: 71 out of ~ 213
Explicit inheritance: 3 4+ 64 out of 121
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Taming the combinatorial explosion

All categories:

Categories: 265 out of ~ 20
Explicit inheritance: 70 out of 471
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The hierarchy of categories as a lattice

saite g magnas
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The hierarchy of categories as a lattice

e A: objects in common

sage: Groups() & Sets().Finite()
Category of finite groups
e V: structure in common

sage: Fields() | Groups()
Category of monoids
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The hierarchy of categories as distributive a lattice

e A: objects in common
sage: Groups() & Sets().Finite()
Category of finite groups

e V/: structure in common

sage: Fields() | Groups()
Category of monoids

Birkhoff representation theorem

An element of a distributive lattice can be represented as the meet
of the meet-irreducible elements above it
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The hierarchy of categories as distributive a lattice

e A: objects in common
sage: Groups() & Sets().Finite()
Category of finite groups

e V/: structure in common

sage: Fields() | Groups()
Category of monoids

Birkhoff representation theorem

An element of a distributive lattice can be represented as the meet
of the meet-irreducible elements above it
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The distributive lattice of categories
Basic concepts (meet-irreducible elements)
e 65 structure categories: Magmas, MetricSpaces, Posets, ...

e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...
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The distributive lattice of categories

Basic concepts (meet-irreducible elements)

e 65 structure categories: Magmas, MetricSpaces, Posets, ...
e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...

sage: Groups() .structure()
frozenset({Category of unital magmas,
Category of magmas,
Category of sets with partial maps,
Category of sets})
sage: Groups().axioms()
frozenset({’Associative’, ’Inverse’, ’Unital’})
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The distributive lattice of categories

Basic concepts (meet-irreducible elements)

e 65 structure categories: Magmas, MetricSpaces, Posets, ...
e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...

sage: Groups() .structure()
frozenset({Category of unital magmas,
Category of magmas,
Category of sets with partial maps,
Category of sets})
sage: Groups().axioms()
frozenset({’Associative’, ’Inverse’, ’Unital’})

Exponentially many potential combinations thereof

sage: Magmas() .Associative() & Magmas().Unital().Inverse()
Category of groups
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Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids
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Scaling
Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

sage: (Add & Mul) .Distributive()
Category of semirings

sage: _.AdditiveInverse()
Category of rings

sage: _.Division()
Category of division rings

sage: _ & Sets().Finite()
Category of finite fields
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Full grown category

@semantic(mmt = ’Semigroup’)
class Semigroups(Category) :
def super_categories():
return [Magmas()]

class ParentMethods:
Qabstract_method
def semigroup_generators(self):
def cayley_graph(self):

class ElementMethods:
def __pow__(x, k): ...

class MorphismMethods:

class CartesianProducts:
def extra_super_categories(self): return [Semigroups()]
class ParentMethods:
def semigroup_generators(self):

Unital = LazyImport(’sage.categories.monoids’, ’Monoids’)
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Implementation

Subposet of implemented categories

e Described by a spanning tree
adding one axiom/construction at a time

e Size: O(number of functions)

Fundamental operations

e joins, meets

e adding one axiom, applying one construction

Algorithmic

e Mutually recursive lattice algorithms

e Reasonable complexity (= linear)

C3 under control!

Summary
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Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B class B class A
NS NS
class C(A,B) class D(B,A)
MRO: C, A, B MRO: D, B, A

Method Resolution Order computed by the C3 algorithm:
e Compatible with subclasses
e Compatible with the order of the bases

e Local

Now, what about:
class E(C, D)

Cannot create a consistent method resolution order (MRO)!
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How to avoid MRO failures? Round 1

e Choose a global order on your classes
e Be consistent with it locally
o Failed!

C3 does not know about your order:

class B class A class C

r

class D(B,A)

T
class E(D,C)

MRO: E, D, B, A, C




SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes

o Be consistent with it locally



SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes
o Be consistent with it locally

o Keeps failing over and over!



SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes
e Be consistent with it locally

o Keeps failing over and over!

Math question: does there always exist some global order?



SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

How to avoid MRO failures? Round 2

e Find some global order on your classes
e Be consistent with it locally

o Keeps failing over and over!

Math question: does there always exist some global order?
Answer: No!

A B C
I I
D1 D2 D3
I I I
El E2 E3

Summary
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How to avoid MRO failures? Round 3

e Choose your global order

e Force C3 to use your order:

class A class B class C

N

class D(B,A)

AN
class E(D,C,B,A)

MRO: E, D, C, B, A

e Always works! Yeah!

e But:

e Highly redundant: a maintenance nightmare!
o Kills the algorithmic complexity of C3, dir, ...

Summary



SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 4
C3 under control:
e Choose your global order
e Run an instrumented version of C3

e Force the usual C3 to use your order
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C3 under control!

How to avoid MRO failures? Round 4
C3 under control:
e Choose your global order
e Run an instrumented version of C3

e Force the usual C3 to use your order

Et voila!
e Always works
e Negligible overhead

e Fully automatic and transparent

http://Nicolas.Thiery.name/
http://sagemath.org/

Keywords: C3 under control
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Summary
SageMath models a variety of mathematical objects

Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

Robust: based on a century of abstract algebra

Using Python’s standard Object Oriented features

Scaling:
e Dynamic construction of hierarchy of classes from the semantic
information and mixin classes provided by the categories
e Lattice algorithms
e Control of the linearization for multiple inheritance (C3)

Adoption?
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Additional benefits

Explicit representation of the knowledge

e Better formalization of the system
e Educational

e Easier to export

Tentative applications

e Math-in-the-Middle? Alignments?

C3 under control!

e Automatic generation of interfaces between systems?

e Cross checking with other systems

e Documentation and navigation systems?

Summary
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The paradigm is good; is this the right implementation?
Natural in its context

e A dynamical language (Python)

e Object oriented programming

Outside of this context?

Alternative implementations?

e In a language with static or gradual typing?

e Using templates or traits?
For example in C++ or Scala

e Using multimethods
For example in Julia or GAP

e In proof systems?
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