SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Modeling mathematics in Python & SageMath:
some fun challenges

Nicolas M. Thiéry

LRI, Université Paris Sud 11
October 8th of 2018, PyData, Paris

k‘ T
Oﬂ

ey
<K

[<X SHS

E :
!/ \\‘i <>
X e
o < = ‘ E "

o

Abstract

The SageMath systems provides thousands of mathematical objects
and tens of thousands of operations to compute with them. A
system of this scale requires an infrastructure for writing and
structuring generic code, documentation, and tests that apply
uniformly on all objects within certain realms.

In this talk, we describe the infrastructure implemented in
SageMath. It is based on the standard object oriented features of
Python, together with mechanisms to scale (dynamic classes, mixins,
...) thanks to the rich available semantic (categories, axioms,
constructions). We relate the approach taken with that in other
systems, and discuss work in progress

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Computational Pure Mathematics!
Maple? Mathematica?

sagemath.org

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Computational Pure Mathematics!

Maple, Mathematica

S50

sagemath.org

sagemath.org

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Computational Pure Mathematics!
Maple, Mathematica

S50

sagemath.org

e Open source

e Based on Python + hundreds of specialized libraries:
Algebra, Combinatorics, Number Theory, Cryptography, ...

o Plays well with the Scientific Python stack

sagemath.org

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Computational Pure Mathematics!

Maple, Mathematica

S50

sagemath.org

Open source

Based on Python + hundreds of specialized libraries:
Algebra, Combinatorics, Number Theory, Cryptography, ...
Plays well with the Scientific Python stack

200+ regular contributors

Workshops: Sage Days 97!

sagemath.org

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Computational Pure Mathematics!

Maple, Mathematica

S50

sagemath.org

e Open source

Based on Python + hundreds of specialized libraries:
Algebra, Combinatorics, Number Theory, Cryptography, ...
Plays well with the Scientific Python stack

200+ regular contributors

Workshops: Sage Days 97!

SageMath notebook inspired the Jupyter notebook
Cython originally developed for SageMath

sagemath.org

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250
0 5 1 3 0.333 0.250 0.200

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250
0 5 1 3 0.333 0.250 0.200

Polynomials: —9x% + x7 +x® — 13x®> — x3 —3x> —8x + 4

SageMath Genericity and selection mechanisms

Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250

0 5 1 3 0.333 0.250 0.200
Polynomials: —9x% + x7 +x® — 13x®> — x3 —3x> —8x + 4

Series: 1+ 1x + %xz + %x3 + 2—14x4 + ﬁxS + ..

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250

0 5 1 3 0.333 0.250 0.200
Polynomials: —9x% + x7 +x® — 13x®> — x3 —3x> —8x + 4

Series: 1+ 1x + %xz + %x3 + 2—14x4 + ﬁxS + ..

Symbolic expressions, equations: cos(x)? + sin(x)? == 1

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

SageMath: a general purpose software for mathematics

Numbers: 42, I, H=9B) 7 2 718781828459045235360287477

4 -1 1 -1 1.000 0.500 0.333
Matrices: -1 2 -1 -1 |, | 0500 0.333 0.250
0 5 1 3 0.333 0.250 0.200

Polynomials: —9x% + x7 +x® — 13x®> — x3 —3x> —8x + 4
Series: 14 1x + %xz + %x3 + 2—14x4 + ﬁxS +--
Symbolic expressions, equations: cos(x)? + sin(x)? == 1

Finite fields, algebraic extensions, elliptic curves, ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Combinatorial objects

loot\)l—l
(6]
(@)}

0100101001001010010100100101001001010010 - - -

1.2 1 @

©) 1
59 — %49 (@) + 42 + 249
Praqt 33372041 g LNg T Praat3ai e 21 ® OT A Fagtigrr 2
@ d

@

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Graphs

Summary

C3 under control!

Scaling

In SageMath

Genericity and selection mechanisms Pioneers

SageMath

~ Geometric objects

SEAL
Raad

AN
NAT

ATV
EVANAN
DAZRA

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Sage: a large library of mathematical objects and
algorithms

e 1.5M lines of code/doc/tests (Python/Cython)
+ dependencies

e 1k+ types of objets
e 2k+ methods and functions

e 200 regular contributors

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Sage: a large library of mathematical objects and
algorithms

e 1.5M lines of code/doc/tests (Python/Cython)
+ dependencies

e 1k+ types of objets
e 2k+ methods and functions

e 200 regular contributors

Problems

e How to structure this library
e How to guide the user
e How to promote consistency and robustness?

e How to reduce duplication?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Sage's large hierarchy of classes

Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a hierarchy of abstract classes:

sets

magmas

RN

unital magmas semigroups

inverse unital magmas monoids

N

groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Sage's large hierarchy of classes

Model math concepts: Finite sets, Groups, Fields, Graphs, ...

By a large hierarchy of abstract classes:

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Sage's large hierarchy of classes

Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a huge hierarchy of abstract classes:

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Sage's large hierarchy of classes

Model math concepts: Finite sets, Groups, Fields, Graphs, ...

By a huge hierarchy of abstract classes:

Summary

—i
TARAN
=" -
=
= _T———
i — =

—{

Viable because:

e Strong mathematical foundations

e Infrastructure: mixins + --- + C3 under control!

<7 . = S -~
- N - S T —_
—— B —l— = =0
A- L — —
e — =—
——

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Example: binary powering

sage: m = 3
sage: m"8 == mrmkmmxmrmkmim == ((m"2)"2)"2
True

sage: m = random_matrix(QQ, 4)
sage: m"8 == mrmxmHmmimkmkm == ((m~2)"2) "2
True

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Example: binary powering

sage: m = 3
sage: m"8 == mrmkmmxmrmkmim == ((m"2)"2)"2
True

sage: m = random_matrix(QQ, 4)
sage: m"8 == mrmxmHmmimkmkm == ((m~2)"2) "2
True

e Complexity: O(log(k)) instead of O(k)!

e We would want a single generic implementation!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Example: binary powering Il
Algebraic realm
e Semigroup:
a set S endowed with an associative binary internal law *

e The integers form a semigroup

e Square matrices form a semigroup

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Example: binary powering Il

Algebraic realm
e Semigroup:
a set S endowed with an associative binary internal law *
e The integers form a semigroup

e Square matrices form a semigroup

We want to

e Implement pow_exp(x,k)
e Specify that
e if x is an element of a semigroup
e then x¥ can be computed with pow_exp (x,k)

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Example: binary powering Il

Algebraic realm

e Semigroup:
a set S endowed with an associative binary internal law *
e The integers form a semigroup

e Square matrices form a semigroup

We want to

e Implement pow_exp(x,k)
e Specify that
e if x is an element of a semigroup
e then x¥ can be computed with pow_exp (x,k)

What happens if

e x is an element of a group? of a finite group?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Selection mechanism

We want

e Design a hierarchy of realms and specify the operations there
e Provide generic implementations of those operations
e Specify in which realm they are valid

e Specify in which realm each object is

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Selection mechanism

We want

Design a hierarchy of realms and specify the operations there

Provide generic implementations of those operations

Specify in which realm they are valid

Specify in which realm each object is

We need a selection mechanism:

e to resolve the call f(x)

e by selecting the most specific implementation of f

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Designing a hierarchy of realms for mathematics

In general
Hard problem: isolate the proper business concepts

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Designing a hierarchy of realms for mathematics

In general
Hard problem: isolate the proper business concepts

In mathematics

e “Few" fundamental concepts:
e basic operations/structure: €, 4, *, cardinality, topology, ...
e axioms: associative, finite, compact, ...
e constructions: cartesian product, quotients, ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Designing a hierarchy of realms for mathematics

In general
Hard problem: isolate the proper business concepts

In mathematics

e “Few" fundamental concepts:

e basic operations/structure: €, 4, *, cardinality, topology, ...
e axioms: associative, finite, compact, ...
e constructions: cartesian product, quotients, ...

e Concepts known by the users

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Designing a hierarchy of realms for mathematics

In general
Hard problem: isolate the proper business concepts

In mathematics

e “Few" fundamental concepts:
e basic operations/structure: €, 4, *, cardinality, topology, ...
e axioms: associative, finite, compact, ...
e constructions: cartesian product, quotients, ...
e Concepts known by the users
e All the richness comes from combining those few concepts to
form many realms:
groups, fields, semirings, lie algebras, ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

A hierarchy of realms based on mathematical categories

A robust hierarchy based on a century of abstract algebra

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Pioneers 1980- |

Axiom, Aldor, MuPAD

e Specific language
e Selection mechanism: “object oriented programming”

e Hierarchy of “abstract classes” modeling the mathematical
categories

Example

category Semigroups:
category Magmas;

intpow := proc(x, k) ...
// other methods

Pioneers

Pioneers 1980- I
GAP

e Specific language

e One filter per fundamental concept:
IsMagma(G), IsAssociative(G), ...

e InstallMethod(Operation, filters, method)

e Method selection according to the filters that are know to be
satisfied by x

e Implicit modeling of the hierarchy

Example

powExp := function(n, k) ...

InstallMethod(pow, [IsMagma, IsAssociative], powExp)

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling

Related developments

Focal (Certified CAS)

e Species

MathComp (Proof assistant)

e Canonical structures

MMT (Knowledge management)
e E.g. LATIN’s theories

C3 under control!

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Implementation in Sage (2008-)

Strategical choices

e A standard language (Python)

o Selection mechanism: object oriented programming

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Implementation in Sage (2008-)

Strategical choices

e A standard language (Python)

e Selection mechanism: object oriented programming

Specific features

e Distinction Element/Parent (as in Magma)
e Morphisms
e Functorial constructions

e Axioms

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Implementation in Sage (2008-)
Strategical choices
e A standard language (Python)

e Selection mechanism: object oriented programming

Specific features

Distinction Element/Parent (as in Magma)

Morphisms

Functorial constructions

e Axioms

Constraints

e Partial compilation (Cython), serialization
e Multiple inheritance with Python / Cython

e Scaling!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The standard Python Object Oriented approach

Abstract classes for elements

class MagmaElement:
@abstract_method
def __mul__(x,y):

class SemigroupElement (MagmaElement) :
def __pow__(x,k): ...

A concrete class

class MySemigroupElement (SemigroupElement) :
Constructor, data structure, ...
def __mul__(x,k): ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Standard OO: classes for parents

Abstract classes

class Semigroup(Magma) :
Q@abstract_method
def semigroup_generators(self):
def cayley_graph(self): ...

A concrete class

class MySemigroup(Semigroup) :
def semigroup_generators(self): ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Standard OO: hierarchy of abstract classes

class Set: ...
class SetElement: ...
class SetMorphism: ...

class Magma (Set): ...
class MagmaFElement (SetElement): ...
class MagmaMorphism(SetMorphism): ...

class Semigroup (Magma) : ...

class SemigroupElement (MagmaElement): ...
def __pow__(self, k): ...

class SemigroupMorphism(MagmaMorphism): ...

SageMath

Genericity and selection mechanisms Pioneers In SageMath

Scaling

C3 under control!

Standard OO: hierarchy of abstract classes

class Set: ...
class SetElement: ...
class SetMorphism: ...

class Magma (Set): ...
class MagmaFElement (SetElement): ...
class MagmaMorphism(SetMorphism): ...

class Semigroup (Magma) : ...

class SemigroupElement (MagmaElement): ...

def __pow__(self, k): ...

class SemigroupMorphism(MagmaMorphism): .

Hmm, this code smells, doesn't it?

e How to avoid duplication?

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Sage's approach: categories and mixin classes
Categories

class Semigroups(Category) :
def super_categories():
return [Magmas()]
class ParentMethods:
class ElementMethods: ...
def __pow__(x, K): ...
class MorphismMethods:

A concrete class

class MySemigroup(Parent) :
def __init__(self):
Parent.__init__(self, category=Semigroups())
def semigroup_generators(self): ...
class Element:
constructor, data structure
def __mul__(x, y): ...

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Usage

sage: S = MySemigroup()
sage: S.category()

Category of semigroups
sage: S.cayley_graph()

sage: S.__class__.mro()

[<class ’MySemigroup_with_category’>,
<type ’sage.structure.parent.Parent’>,
<class ’Semigroups.parent_class’>,
<class ’Magmas.parent_class’>,
<class ’Sets.parent_class’>, .. |

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Usage

sage: S = MySemigroup()
sage: S.category()

Category of semigroups
sage: S.cayley_graph()

sage: S.__class__.mro()

[<class ’MySemigroup_with_category’>,
<type ’sage.structure.parent.Parent’>,
<class ’Semigroups.parent_class’>,
<class ’Magmas.parent_class’>,
<class ’Sets.parent_class’>, ...]

Generic tests
sage: TestSuite(S).run(verbose=True)
running ._test_associativity() . . . pass

running ._test_cardinality() . . . pass
running ._test_elements_eq_transitive() . . . pass

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling

How does this work?

Dynamic construction, from the mixins, of:

e three hierarchies of abstract classes:

set set element
magma magma element
unital magma semigroup unital magma element semigroup element

T i

C3 under control! Summary

set morphism

magma morphism

2N

unital magma morphism semigroup morphism

|

inverse unital magma monoid inverse unital magma element monoid element inverse unital magma morphism monoid morphism

N N

group group element

e the concrete classes for parents and elements

N

group morphism

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Summary
Explicit modeling of

e Elements, Parents, Morphisms, Homsets

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Summary
Explicit modeling of

e Elements, Parents, Morphisms, Homsets
e Categories: bookshelves about a given realm:

e Semantic information
e Mixins for parents, elements, morphisms, homsets:
Generic Code, Documentation, Tests

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Summary
Explicit modeling of

e Elements, Parents, Morphisms, Homsets
e Categories: bookshelves about a given realm:

e Semantic information
e Mixins for parents, elements, morphisms, homsets:
Generic Code, Documentation, Tests

Method selection mechanism

e Standard Object Oriented approach

e With a twist: classes constructed dynamically from mixins

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Summary
Explicit modeling of

e Elements, Parents, Morphisms, Homsets
e Categories: bookshelves about a given realm:
e Semantic information

e Mixins for parents, elements, morphisms, homsets:
Generic Code, Documentation, Tests

Method selection mechanism

e Standard Object Oriented approach
e With a twist: classes constructed dynamically from mixins
Isn’t this gross overdesign?

e Deviation from standard Python, additional complexity

e Higher learning curve

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

sage: ¢ = C.an_element(); c
(1, 1.00000000000000, 0*Z(3))
sage: (c+c)”3

(8, 8.00000000000000, 0*Z(3))

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

sage: ¢ = C.an_element(); c
(1, 1.00000000000000, 0*Z(3))
sage: (c+c)”3

(8, 8.00000000000000, 0*Z(3))

sage: C.category()
Category of Cartesian products of commutative rings

Scaling

It's all about scaling

sage: GF3 = mygap.GF(3)
sage: C = cartesian_product([ZZ, RR, GF3])

sage: ¢ = C.an_element(); c
(1, 1.00000000000000, 0*Z(3))
sage: (c+c)”3

(8, 8.00000000000000, 0*Z(3))

sage: C.category()
Category of Cartesian products of commutative rings

sage: C.category() .super_categories()

[Category of commutative rings,

Category of Cartesian products of distributive magmas and additive n
Category of Cartesian products of monoids,

Category of Cartesian products of commutative magmas,

Category of Cartesian products of commutative additive groups]

sage: len(C.categories())

44

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

Categories for groups:

sets

magmas

7N\

unital magmas semigroups

| |

inverse unital magmas monoids

N

groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
/ \
semigroups unital magmas
g |
finite semigroups monoids inverse unital magmas
finite monoids groups

finite groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
associat% \
semigroups unital magmas
unital
finite semigroups monoids inverse unital magmas
inverse
finite monoids groups

finite groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

Taming the combinatorial explosion
Categories for finite groups:

sets
finite sets magmas
associat% \
semigroups unital magmas
L |
finite semigroups monoids inverse unital magmas
inverse

finite monoids groups

/

finite groups

Implemented categories: 11 out of 14
Explicit inheritance: 1 + 9 out of 15

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas
fg maguas comn magnas semigroups unital magnas
finite semigroups £g semigroups monoids inverse unital maguas
finite fg semigroups finite monoids comn monoids

finite groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas

fg maguas comm magnas semigroups unital magnas

— —
_— e
ups | fg semigroups wmgs— W
—]
finite fg semigroups finite monoids comm monoids

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

sets
finite sets magmas

£g nagmas comn magnas semigroups unital magmas

= _
—] AN
e = =
———— —

-

finite groups

Implemented categories: 17 out of ~ 54
Explicit inheritance: 1 4 15 out of 32

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

All implemented categories for fields:

Implemented categories: 71 out of ~ 213
Explicit inheritance: 3 4+ 64 out of 121

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Taming the combinatorial explosion

All categories:

Categories: 265 out of ~ 20
Explicit inheritance: 70 out of 471

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The hierarchy of categories as a lattice

saite g magnas

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The hierarchy of categories as a lattice

e A: objects in common

sage: Groups() & Sets().Finite()
Category of finite groups
e V: structure in common

sage: Fields() | Groups()
Category of monoids

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The hierarchy of categories as distributive a lattice

e A: objects in common
sage: Groups() & Sets().Finite()
Category of finite groups

e V/: structure in common

sage: Fields() | Groups()
Category of monoids

Birkhoff representation theorem

An element of a distributive lattice can be represented as the meet
of the meet-irreducible elements above it

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The hierarchy of categories as distributive a lattice

e A: objects in common
sage: Groups() & Sets().Finite()
Category of finite groups

e V/: structure in common

sage: Fields() | Groups()
Category of monoids

Birkhoff representation theorem

An element of a distributive lattice can be represented as the meet
of the meet-irreducible elements above it

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The distributive lattice of categories
Basic concepts (meet-irreducible elements)
e 65 structure categories: Magmas, MetricSpaces, Posets, ...

e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The distributive lattice of categories

Basic concepts (meet-irreducible elements)

e 65 structure categories: Magmas, MetricSpaces, Posets, ...
e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...

sage: Groups() .structure()
frozenset({Category of unital magmas,
Category of magmas,
Category of sets with partial maps,
Category of sets})
sage: Groups().axioms()
frozenset({’Associative’, ’Inverse’, ’Unital’})

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The distributive lattice of categories

Basic concepts (meet-irreducible elements)

e 65 structure categories: Magmas, MetricSpaces, Posets, ...
e 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

e 13 constructions: CartesianProduct, Topological, Homsets, ...

sage: Groups() .structure()
frozenset({Category of unital magmas,
Category of magmas,
Category of sets with partial maps,
Category of sets})
sage: Groups().axioms()
frozenset({’Associative’, ’Inverse’, ’Unital’})

Exponentially many potential combinations thereof

sage: Magmas() .Associative() & Magmas().Unital().Inverse()
Category of groups

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

sage: (Add & Mul) .Distributive()
Category of semirings

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

sage: (Add & Mul) .Distributive()
Category of semirings

sage: _.AdditiveInverse()
Category of rings

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

sage: (Add & Mul) .Distributive()
Category of semirings

sage: _.AdditiveInverse()
Category of rings

sage: _.Division()
Category of division rings

Scaling
Some more examples

sage: Mul = Magmas() .Associative() .Unital()
Category of monoids

sage: Add = AdditiveMagmas() .AdditiveAssociative() .AdditiveCommutatis
Category of commutative additive monoids

sage: (Add & Mul) .Distributive()
Category of semirings

sage: _.AdditiveInverse()
Category of rings

sage: _.Division()
Category of division rings

sage: _ & Sets().Finite()
Category of finite fields

Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Full grown category

@semantic(mmt = ’Semigroup’)
class Semigroups(Category) :
def super_categories():
return [Magmas()]

class ParentMethods:
Qabstract_method
def semigroup_generators(self):
def cayley_graph(self):

class ElementMethods:
def __pow__(x, k): ...

class MorphismMethods:

class CartesianProducts:
def extra_super_categories(self): return [Semigroups()]
class ParentMethods:
def semigroup_generators(self):

Unital = LazyImport(’sage.categories.monoids’, ’Monoids’)

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling
Implementation

Subposet of implemented categories

e Described by a spanning tree
adding one axiom/construction at a time

e Size: O(number of functions)

C3 under control!

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling
Implementation

Subposet of implemented categories

e Described by a spanning tree
adding one axiom/construction at a time

e Size: O(number of functions)

Fundamental operations

e joins, meets

e adding one axiom, applying one construction

C3 under control!

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling
Implementation

Subposet of implemented categories

e Described by a spanning tree
adding one axiom/construction at a time

e Size: O(number of functions)

Fundamental operations

e joins, meets

e adding one axiom, applying one construction

Algorithmic

e Mutually recursive lattice algorithms

e Reasonable complexity (= linear)

C3 under control!

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B
NS
class C(A,B)

MRO: C, A, B

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B class B class A
NS NS
class C(A,B) class D(B,A)

MRO: C, A, B MRO: D, B, A

C3 under control!

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B class B class A
NS NS
class C(A,B) class D(B,A)
MRO: C, A, B MRO: D, B, A

Method Resolution Order computed by the C3 algorithm:
e Compatible with subclasses
e Compatible with the order of the bases

e Local

C3 under control!

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B class B class A
NS NS
class C(A,B) class D(B,A)
MRO: C, A, B MRO: D, B, A

Method Resolution Order computed by the C3 algorithm:
e Compatible with subclasses
e Compatible with the order of the bases

e Local

Now, what about:
class E(C, D)

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B class B class A
NS NS
class C(A,B) class D(B,A)
MRO: C, A, B MRO: D, B, A

Method Resolution Order computed by the C3 algorithm:
e Compatible with subclasses
e Compatible with the order of the bases

e Local

Now, what about:
class E(C, D)

Cannot create a consistent method resolution order (MRO)!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 1

e Choose a global order on your classes

e Be consistent with it locally

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 1

e Choose a global order on your classes
e Be consistent with it locally
e Failed!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 1

e Choose a global order on your classes
e Be consistent with it locally
o Failed!

C3 does not know about your order:

class B class A class C

r

class D(B,A)

T
class E(D,C)

MRO: E, D, B, A, C

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes

o Be consistent with it locally

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes
o Be consistent with it locally

o Keeps failing over and over!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 2

e Find some global order on your classes
e Be consistent with it locally

o Keeps failing over and over!

Math question: does there always exist some global order?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

How to avoid MRO failures? Round 2

e Find some global order on your classes
e Be consistent with it locally

o Keeps failing over and over!

Math question: does there always exist some global order?
Answer: No!

A B C
I I
D1 D2 D3
I I I
El E2 E3

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
How to avoid MRO failures? Round 3

e Choose your global order

e Force C3 to use your order:

class A class B class C

N

class D(B,A)

AN
class E(D,C,B,A)

MRO: E, D, C, B, A

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary
How to avoid MRO failures? Round 3

e Choose your global order

e Force C3 to use your order:

class A class B class C

N

class D(B,A)

AN
class E(D,C,B,A)

MRO: E, D, C, B, A

e Always works! Yeah!

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!
How to avoid MRO failures? Round 3

e Choose your global order

e Force C3 to use your order:

class A class B class C

N

class D(B,A)

AN
class E(D,C,B,A)

MRO: E, D, C, B, A

e Always works! Yeah!

e But:

e Highly redundant: a maintenance nightmare!
o Kills the algorithmic complexity of C3, dir, ...

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

How to avoid MRO failures? Round 4
C3 under control:
e Choose your global order
e Run an instrumented version of C3

e Force the usual C3 to use your order

http://Nicolas.Thiery.name/
http://sagemath.org/

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control!

How to avoid MRO failures? Round 4
C3 under control:
e Choose your global order
e Run an instrumented version of C3

e Force the usual C3 to use your order

Et voila!
e Always works
e Negligible overhead

e Fully automatic and transparent

Summary

http://Nicolas.Thiery.name/
http://sagemath.org/

C3 under control!

How to avoid MRO failures? Round 4
C3 under control:
e Choose your global order
e Run an instrumented version of C3

e Force the usual C3 to use your order

Et voila!
e Always works
e Negligible overhead

e Fully automatic and transparent

http://Nicolas.Thiery.name/
http://sagemath.org/

Keywords: C3 under control

http://Nicolas.Thiery.name/
http://sagemath.org/

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

Summary

e SageMath models a variety of mathematical objects

Summary

Summary
e SageMath models a variety of mathematical objects

e Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

Summary

Summary
e SageMath models a variety of mathematical objects

e Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

e Robust: based on a century of abstract algebra

Summary
SageMath models a variety of mathematical objects

Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

Robust: based on a century of abstract algebra

Using Python’s standard Object Oriented features

Summary

Summary

SageMath models a variety of mathematical objects

Supported by a large hierarchy of categories
Bookshelves for:

Semantic

Generic Code, Documentation, Tests

for parents, elements, morphisms, homsets
Axioms, Constructions, ...

Robust: based on a century of abstract algebra

Using Python’s standard Object Oriented features

Scaling:
e Dynamic construction of hierarchy of classes from the semantic

information and mixin classes provided by the categories

Summary

Summary

Summary
SageMath models a variety of mathematical objects

Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

Robust: based on a century of abstract algebra

Using Python’s standard Object Oriented features

Scaling:
e Dynamic construction of hierarchy of classes from the semantic
information and mixin classes provided by the categories
e Lattice algorithms
e Control of the linearization for multiple inheritance (C3)

Summary

Summary
SageMath models a variety of mathematical objects

Supported by a large hierarchy of categories
Bookshelves for:
e Semantic
e Generic Code, Documentation, Tests
o for parents, elements, morphisms, homsets
e Axioms, Constructions, ...

Robust: based on a century of abstract algebra

Using Python’s standard Object Oriented features

Scaling:
e Dynamic construction of hierarchy of classes from the semantic
information and mixin classes provided by the categories
e Lattice algorithms
e Control of the linearization for multiple inheritance (C3)

Adoption?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling

Additional benefits

Explicit representation of the knowledge

o Better formalization of the system
e Educational

e Easier to export

C3 under control!

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling

Additional benefits

Explicit representation of the knowledge

e Better formalization of the system
e Educational

e Easier to export

Tentative applications

e Math-in-the-Middle? Alignments?

C3 under control!

e Automatic generation of interfaces between systems?

e Cross checking with other systems

e Documentation and navigation systems?

Summary

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The paradigm is good; is this the right implementation?
Natural in its context

¢ A dynamical language (Python)

e Object oriented programming

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The paradigm is good; is this the right implementation?
Natural in its context

¢ A dynamical language (Python)

e Object oriented programming

Outside of this context?

SageMath Genericity and selection mechanisms Pioneers In SageMath Scaling C3 under control! Summary

The paradigm is good; is this the right implementation?
Natural in its context

e A dynamical language (Python)

e Object oriented programming

Outside of this context?

Alternative implementations?

e In a language with static or gradual typing?

e Using templates or traits?
For example in C++ or Scala

e Using multimethods
For example in Julia or GAP

e In proof systems?

	SageMath
	Genericity and selection mechanisms
	Pioneers
	In SageMath
	Scaling
	C3 under control!
	Summary

