Corps finis

Exercice 1

Le but de cet exercice est l'étude et l'implantation de l'algorithme de Cipolla d'extraction de racines carrées modulo p. Soit p un nombre premier impair et D un résidu quadratique non nul (i.e. un carré non nul) modulo p. On cherche à déterminer une racine carrée de D dans \mathbf{F}_p .

- 1. Soit $u \in \mathbf{F}_p$. À quelle condition sur u et D le polynôme $P = X^2 uX + D$ est-il irréductible sur \mathbf{F}_p ?
- 2. Écrire une fonction cherche_u(D,p) qui à l'entrée (D,p) associe un $u \in \mathbf{F}_p$ tel que P est irréductible.

[Voir kronecker et is_square.]

- 3. (Sans Sage) Supposons P irréductible. Quelle est la dimension du quotient $\mathbf{F}_p[T]/(P(T))$ en tant que \mathbf{F}_p -espace vectoriel? Si t désigne la classe de T dans ce quotient, écrire la factorisation du polynôme $X^2 uX + D$ en produit de facteurs linéaires ne faisant intervenir que l'indéterminée X et t. Exprimer alors D en fonction de t, puis une racine carrée de D en fonction de t.
- 4. Écrire une fonction cipolla(D,p) prenant (D,p) en entrée avec $\left(\frac{D}{p}\right) = 1$ et renvoyant une racine carrée de D modulo p en sortie.

[Voir la commande K.<a>=k.extension(f(x)) permettant de définir l'extension K de k obtenue en quotientant k[x] par la polynôme irréductible f. La syntaxe signifie que a est la classe de x dans le quotient.]

- 5. Évaluer le coût de cet algorithme.
- 6. Le temps permettant, étudier en fin de TP l'adaptation de l'algorithme au cas où le corps de base est un corps fini quelconque \mathbf{F}_q avec q impair.

[Voir GF (pour « Galois Field ») ou FiniteField qui sont des commandes synonymes.]

7. Que dire du cas où q est une puissance de 2?

Exercice 2

- 1. Justifier, sans utiliser Sage, que $P = U^2 2 \in \mathbf{F}_5[U]$ est irréductible. On note $K = \mathbf{F}_5[U]/(P)$ l'extension de \mathbf{F}_5 correspondante.
- 2. Justifier de même que $Q=V^3+V+1\in \mathbf{F}_5[V]$ est irréductible. On note $L=\mathbf{F}_5[V]/(Q)$ l'extension de \mathbf{F}_5 correspondante.
- 3. Montrer que Q est irréductible sur K:
 - (a) avec Sage (on pourra utiliser GF, ou FiniteField, et PolynomialRing et s'assurer que $V^3 + V + 1$ est bien vu comme polynôme à coefficients dans K),
 - (b) sans Sage.

On note M le corps K[V]/(Q). C'est à la fois une extension de K et de L (en effet M est un corps contenant \mathbf{F}_5 et une racine de Q).

- 4. (Sans Sage) Quel est le degré de M sur \mathbf{F}_5 , quel est son cardinal, quels sont ses sous-corps?
- 5. Si u et v désignent respectivement les classes de U et V dans M, montrer, sans utiliser Sage, que x = u + v engendre l'extension M/\mathbf{F}_5 .

- 6. Calculer avec Sage le polynôme minimal de x sur \mathbf{F}_5 (une première étape consiste à donner une définition correcte de x sous Sage. Pour cela on pourra définir directement K en utilisant la commande $\mathsf{GF}(5**2, \mathsf{name}=?...?, \mathsf{modulus}=...)$, puis quotienter l'anneau de polynômes en une variable sur K par l'idéal (Q) en utilisant quotient). Retrouver le fait que $M = \mathbf{F}_5(x)$.
- 7. Déterminer la matrice dont la *i*-ème colonne $(0 \le i \le 5)$ donne les coordonnées de x^i dans la base $(1, v, v^2, u, uv, uv^2)$.

[On pourra utiliser MatrixSpace et trouver une façon astucieuse d'extraire les coefficients de x^i vu comme polynôme en u et v.]

- 8. En déduire une expression de u et v comme polynômes en x de degré < 6.
- 9. Sans Sage, justifier que $x + x^{5^2} + x^{5^4} \in K$ et que $x + x^{125} \in L$.

Exercice 3

- 1. Écrire un test d'irréductibilité test_irr(P,p) prenant en entrée un polynôme $P \in (\mathbf{Z}/p\mathbf{Z})[X]$ de degré $n \ge 1$ et renvoyant True si P est irréductible sur $\mathbf{Z}/p\mathbf{Z}$ et False sinon.
- 2. Implanter un algorithme probabiliste cherche_irr(n,p) (l'algorithme de Ben Or par exemple, ou un algorithme utilisant le test de la question précédente) prenant en entrée un nombre premier p et un entier n ≥ 1 et renvoyant un polynôme irréductible unitaire de degré n à coefficients dans Z/pZ ainsi que le nombre N d'essais avant que le polynôme tiré uniformément au hasard ne soit irréductible.
- 3. Étudier la généralisation des fonctions ci-dessus au cas d'un corps fini \mathbf{F}_q quelconque. [Voir GF ou FiniteField.]

Exercice 4

Soit p un nombre premier impair et f un polynôme unitaire sans facteur carré de $\mathbf{F}_p[x]$ de degré n = rd. On suppose que f est produit de $r \ge 2$ polynômes irréductibles tous de degré d.

On considère le pseudocode suivant implantant un algorithme de recherche de facteur non trivial de f.

Entrée : (f, d) comme ci-dessus.

- 1. Choisir $h \in \mathbf{F}_p[x]$ de degré < n uniformément au hasard.
- 2. Calculer $g := \gcd(f, h^{\frac{p^d-1}{2}} 1)$.
- 3. Si $1 \leqslant \deg g \leqslant \deg f 1$, on renvoie g, sinon on renvoie "échec".
 - 1. Quel est la probabilité de succès de l'algorithme ci-dessus.
 - 2. Implanter l'algorithme ci-dessus puis un algorithme de factorisation des polynômes de $\mathbf{F}_p[x]$ sans facteur carré et dont les facteurs irréductibles sont tous de même degré d (donné en entrée).
 - 3. Tester votre algorithme sur les polynômes cyclotomiques $\Phi_n(x)$ vus dans $\mathbf{F}_p[x]$ sous l'hypothèse $p \nmid n$.