
CHAPTER 1

Predicate Logic (sections 1.3, 1.4)

1.1. Introduction

Exemple. �Every man has a brain; Socrate is a man; therefore Socrate has a
brain.�

Is propositional logic expressive enough for this sentence ?

What is missing ?

1.1.1. Quanti�ers, Predicates, Validity.

Exemple. �Every man has a brain�

�For all man, this man has a brain�

New features: constants / variables / quanti�er / predicates

Définition. Quanti�ers:

• For all
• For every
• There exists
• For at least one
• For each
• For any
• For some

Universal quanti�er : (∀x)

Existential quanti�er : (∃x)

Always place the quanti�ers inside ( ).

1.1.2. Predicates:

Définition. Predicate: a statement that describes a property of a variable

Exemple. P (x) : x has a brain

�For all man, this man has a brain�

Translates into (∀x) P (x)

As in propositional logic, we can build well formed formulas from predicates and
logic connectives.

Exemple. (∀x) B(x) → R(x)′: if x is blue, then x is not red.
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1.1.3. Domain of interpretation: If x is a car, the sentence above (∀x) P (x)
is false.

The truth of the sentence depends on where you take x from!

Définition. Domain of interpretation:

The collection of objects from which x may be selected

Exemple. (∀x) (x > 0)
DOI: all integers

DOI: all integers > 10

DOI: all humans

Exemple. For any thing, if it's a man then it has a brain

P (x): x is a man

Q(x): x has a brain

(∀x) P (x) → Q(x)

Exercice 1. Write a formula for the following sentence:

�There exists a man which is called Socrate�

1.1.4. N-Ary predicates:

Définition. Binary predicate: predicate which takes two variables

N-Ary predicate : predicate which takes several variables

• P (x, y) = x > y (DOI: integers)
• P (Q,B): Q is the author of the book B (DOI: all authors / books)
• Everyone has exactly one best friend:

B(X, Y ): Y is the best friend of X
(∀x) (∃y) B(X, Y ) ∧ [ (∀Z) B(X, Z) → (Z = Y ) ]
For any person X, there exists a person Y , such that:

(1) Y is the best friend of X
(2) For any person Z, if Z is the best friend of X, then Z is actually Y .

1.1.5. Truth value. Can we de�ne the Truth table of a w� ?

Problem 1.1.1. The domain of interpretation may be in�nite.

To assess the truth value, we need to know:

(1) What is the domain of interpretation.
(2) What property of elements of the DOI does P(x) represent.
(3) An assignment for each constant.

Définition. This is called an interpretation.

Exemple. [?, Exercise 1 p. 41]

What is the truth value of the following w�s for this interpretation:

DOI: integers; O(x): x is odd; L(x): x < 10; G(x): x > 9

(1) (∃x) O(x)
There exists an odd number
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(2) (∀x) [L(x) → O(x)]
For any integer x, if x is strictly lower than 10, then x is odd;
Any integer strictly lower than 10 is odd;

(3) (∃x) [L(x) ∧G(x)]
There exists an integer x such that x is strictly lower than 10 and x

is strictly larger than 9
(4) (∀x) [L(x) ∨G(x)]

For any integer, either x is strictly lower than 10 or x is strictly bigger
that 9

Exercice 2. [?, Exercise 3 p. 41]

Are the following w�s true for this interpretation:

DOI: states of the US.

Q(x, y): x is north of y; P (x): x starts with the letter M; a is "Mississippi".

(1) (∀x) P (x)
(2) (∀x) (∀y) (∀z) [ (Q(x, y) ∧Q(y, z)) → Q(x, z) ]
(3) (∃y) (∃x) Q(x, y)
(4) (∀x) (∃y) [P (y) ∧Q(x, y)]

For any state x, there exists a state y such that y starts with M and
x is north of y.

(5) (∃y) Q(a, y)

Exercice 3. Translate the following sentences into w�s, with:

DOI: world; D(x): x is a day; S(x): x is sunny; R(x): x is rainy;

M is "Monday"; T is "Tuesday".

(1) All days are sunny:
(2) Some days are not rainy:
(3) Every day that is sunny is not rainy:
(4) Some days are sunny and rainy:
(5) No day is both sunny and rainy:
(6) It is always a sunny day only if it is a rainy day:
(7) No day is sunny:
(8) Monday was sunny; therefore every day will be sunny:
(9) It rained both Monday and Tuesday:
(10) If some day is rainy, then every day will be sunny:

1.1.6. Dummy variables / free variables:

Définition. A dummy variable is a variable which is linked to a quanti�er.

The name of the variable is irrelevant.

Same thing as a local variable in a program.

Exemple. (∃x) Q(x) is the same w� as (∃z) Q(z)
(∃x) (∀y) Q(x, y) is the same w� as (∃z) (∀t) Q(z, t) or (∃y) (∀x) Q(y, x)

Définition. A variable is free if it is not linked to a quanti�er.

Same thing as a global variable in a program.
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1.1.7. Validity.

Résumé 1.1.2. Where are we?

(1) We can build all the w� of predicate logic.
(2) Given a w� P, and an interpretation, we can decide the truth value of P.

Définition. Argument : P1 ∧ P2 ∧ · · · ∧ Pk → Q

• In propositional logic, an argument is valid if it's a tautology.
I.e. if it's true whatever truth value are assigned to each basic propo-

sition.
• In predicate logic, an argument is valid if it's intrinsically true.

I.e. if it's true for ANY interpretation.

Exercice 4. [?, Exercise 16 p. 35]

Give interpretations to prove that the following w�s are not valid:

(1) (∃x) A(x) ∧ (∃x) B(x) → (∃x) [ A(x) ∧B(x) ]
(2) (∀x) (∃y) P (x, y) → (∃x) (∀y) P (x, y)
(3) (∀x) [P (x) → Q(x)] → (∀x) [P (x) ∨Q(x)]
(4) (∀x) [ A(x)′ ] ↔ [(∀x) A(x) ]′

1.2. Predicate logic

There is an in�nity of interpretations, so there is no algorithm to check the validity
of a predicate.

We will have to use REASON:

• Reuse the rules from propositional logic
• Accept a few basic new rules as intuitively valid
• Use formal logic with those rules to prove arguments

1.2.1. Universal instantiation:

Exemple. We want to be able to prove the following argument:

Every human is mortal; Socrate is a man; Therefore Socrate is mortal.

H(x): x is a human; M(x): x is a mortal; s: Socrate

(∀x) [H(x) → M(x)] ∧H(s) → M(s)

Définition. Rule of universal instantiation (ui):

From: (∀x) P (x)
Can derive: P (s)
Note: s can be any constant.

We decide that this rule is valid, because it is intuitively valid.

Proof sequence for: (∀x) [H(x) → M(x)] ∧H(s) → M(s)

1. (∀x) [H(x) → M(x)] (hyp)
2. H(s) (hyp)
3. H(s) → M(s) (ui 1)
4. M(s) (mp 2, 3)

Exercice 5. Prove (∀x) [ P (x) → R(x) ] ∧ [ R(y)′ ] → [ P (y)′ ]
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1.2.2. Universal generalization:

Exemple. �Every human is a living being. Every living being is mortal.Therefore
every human is mortal.�

H(x): is a human

L(x): is a living being

M(x) is mortal

(∀x) [H(x) → L(x)] ∧ (∀x) [L(x) → M(x)] → (∀x) [H(x) → M(x)]

This is clearly something we want to be able to prove, but we cannot use hypothet-
ical syllogism directly!

Définition. Rule of universal generalization (ug)

From: P (s)
Can derive: (∀x) P (x)
s must be an arbitrary element of the domain.

Exemple. (∀x) [H(x) → L(x)] ∧ (∀x) [L(x) → M(x)] → (∀x) [H(x) → M(x)]

1. (∀x) H(x) → L(x) (hyp)
2. (∀x) L(x) → M(x) (hyp)
3. H(s) → M(s) (ui 1)
4. L(s) → M(s) (ui 2)
5. H(s) → M(s) (hs 3, 4)
6. (∀x) [H(x) → M(x)] (ug 5)

Exemple. s: Socrate; H(x): x is a man; M(x): x is mortal:

1. M(s) (hyp)
2. H(s)′ ∨M(s) (add 1)
3. H(s) → M(s) (imp 2)
4. (∀x) [H(x) → M(x)] (ug 3)

Socrate is a mortal, therefore every man is a mortal.

This proof sequence is incorrect: you cannot apply ug at step 4.

Indeed s is Socrate, and not an arbitrary element of the domain.

Exercice 6. Prove the following arguments:

(1) (∀x) [P (x) ∧Q(x)] → (∀x) P (x) ∧ (∀x) Q(x)
(2) (∀x) P (x) ∧ (∀x) Q(x) → (∀x) (P (x) ∧Q(x))
(3) (∀x) [P (x) ∧ (∀y) Q(x, y)] → (∀x) (∀y) Q(x, y)

1.2.3. Existential instantiation:

Exemple. DOI: contents of the fridge.

There exists a fruit; therefore, I can take a fruit.

F (x): x is a fruit

(∃x) F (x) → F (s)
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Définition. Rule of existential instantiation (ei):

From: (∃x) P (x)
Can derive: P (s)
s must be a newly created variable

Exemple. (∀x) [P (x) → Q(x)] ∧ (∃y) P (y) → Q(s)

1. (∀x) [P (x) → Q(x)] (hyp)
2. (∃y) P (y) (hyp)
3. P (s) (ei 2)
4. P (s) → Q(s) (ui 1)
5. Q(s) (mp 3, 4)

1.2.4. Existential generalization:

Exemple. DOI: contents of the fridge

I see a fruit, therefore there exists a fruit.

F (s) → (∃x) F (x)

Définition. Rule of existential generalization (eg)

From: F (s)
Can derive:(∃x) F (x)

Exemple. (∀x) [P (x) → Q(x)] ∧ (∃y) P (y) → (∃y) Q(y)

1. (∀x) [P (x) → Q(x)] (hyp)
2. (∃y) P (y) (hyp)
3. P (s) (ei 2)
4. P (s) → Q(s) (ui 1)
5. Q(s) (mp 3, 4)
6. (∃y) Q(y) (eg 5)

Exemple. (∃x) P (x) ∧ (∃x) Q(x) → (∃x) [P (x) ∧Q(x)]

1. (∃x) P (x) (hyp)
2. (∃x) Q(x) (hyp)
3. P (s) (ei 1)
4. Q(s) (ei 2)
5. P (s) ∧Q(s) (add 3, 4)
6. (∃x) [P (x) ∧Q(x)] (eg 5)

We have seen that the previous argument is incorrect:

So, where is the �aw in the following proof ?

For example, s cannot have been created by existential instantiation

Exercice 7. Prove or disprove the following arguments

(1) (∃x) (∀y) Q(x, y) → (∀y) (∃x) Q(x, y)
(2) (∀x) (∃y) Q(x, y) → (∃y) (∀x) Q(x, y)

1.2.5. Deduction Method and Temporary Hypothesis:

Exemple. P (s) → (∀y) Q(x, y) → (∀y) [P (s) → Q(x, y)]
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1.3. Conclusion

Goal: formalization of arguments and proofs.

Propositional logic::
propositions A, B, . . .
connectives, well formed formula
truth table
argument valid i� w� is a tautology
proofs:

• compute the truth table (algorithm)
• formal logic, deduction rules

Ex 24, 37
Predicate logic:

variables, predicates
domain of interpretation
connectives, w�
interpretation
truth table: all possible interpretations (in�nite)
argument valid i� w� is true for all possible interpretations
proofs:

• no algorithm
• formal logic, deduction rules

Those two logic are correct and complete.

They are still not powerful enough to represent all real life argument.

For this we would need of more powerful logics (2nd order), that allows for quan-
tifying other sets.

Problem: it's often di�cult, if not impossible to prove that those logics are complete
and correct!

We won't need to go into those details.

We have seen enough low-level logic to help us write safely less formal proofs.
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