Proof Of Correctness (Sections 1.6, 2.3)

1.1. Introduction

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

Donald E. Knuth

How to check if a program is correct?
Why checking if a program is correct?
What is a correct program?

Définition. Specification: precise description of how a program should behave.
A program is correct, if it behaves in accordance with its specifications.

How to check if a program is correct?
- Testing
 - Designing good test data sets
 You can prove there is a bug. No proof of no bug!
- Proof of Correctness

1.2. Correctness

1.2.1. Assertions.

...
 x=sqrt(r); // r should be >= 0!
 x=a[i]; // i should be in the correct range
...

Définition. Assertion: condition on the variables of a program that should be verified at some given step, if the program is running correctly.

Using assert in C/C++:

```c
#include <assert.h>
...
assert(r>=0);
x=sqrt(r);
assert((0<=i) && (i<MAX));
x=a[i];
...
```

Each assertion is automatically checked:
- If the assertion is not verified, the program stops immediately with a message like:

 Assertion failed, line 35 of file foo.c

- That’s more informative for the user than a segmentation fault at the following line.
- This can be deactivated by adding a #define NDEBUG preprocessor directive.

With C++, java and other languages, you can use exceptions instead of assert:
- More informative error messages
- Error recovery mechanisms

Static type checking also makes some kind of assertion checking.

One way or the other, check assertions in your programs.

1.2.2. Specification of a function:

```c
int factorial(int n) {
    // Preconditions : n is a non-negative integer
    // Postcondition : returns n!
    ...
    int factorial(int n) {
        assert(n>=0);
        if (n==0) return 1;
        return n*factorial(n-1);
    }
}
```

The specification of a program can be formalized as follow:
- P : program
- X : input
- $P(X)$: output
- Q : precondition : predicate $Q(X)$ on the input
- R : postcondition : predicate $R(X, P(X))$ on the input and the output

Exemple. Program to compute of a square root

- $P : y := \sqrt{x}$;
- $X : x$
- $P(x) : y$
- $Q(x) : x \geq 0$
- $R(x, y) : y^2 = x$

Définition. P is correct if $(\forall X) \ Q(X) \rightarrow R(X, P(X))$.

A Hoare triple is just a short hand notation : $\{Q\} \ P \ \{R\}$

Exemple. $\{x \geq 0\} \ y := \sqrt{x}; \ \{y^2 = x\}$

1.3. Proof of Correctness

1.3.1. Divide and Conquer.

Let P be a big program:
To prove \(\{ Q \} \ P \{ R \} \), we break \(P \) into elementary steps, and insert assertions that describe the state of the program at each step:

\[
\begin{align*}
&\{ Q \} \\
&s_0 \\
&s_1 \\
&\{ R_1 \} \\
&s_2 \\
&\{ R_1 \} \\
&s_3 \\
&\vdots \\
&s_{n-1} \\
&\{ R \}
\end{align*}
\]

\(P \) is correct, if each step is correct, i.e. the following Hoare triples hold:

- \(\{ Q \} s_0 \{ R_1 \} \),
- \(\{ R_1 \} s_1 \{ R_2 \} \),
- \(\ldots \)
- \(\{ R_{n-1} \} s_{n-1} \{ R \} \)

To prove that the elementary steps are correct, we will use some syntactic rules, exactly as we did in formal logic.

1.3.2. Assignment rule

Consider the following Hoare triple: \(\{ Q \} \ x := e \ { R \} \)

Théorème. If from \(Q \) you can derive \(R \) with \(x \) substituted everywhere by \(e \), then the Hoare triple is valid.

Exemple. \(\{ x = 2 \} \ y := x + 1 \ { y = 3 \} \)

When substituting, \(y = 3 \) becomes \(x + 1 = 3 \). From \(x = 2 \), you can deduce \(x + 1 = 3 \).

So this Hoare triple holds.

Exemple. \(\{ x > 0 \} \ x := x + 1 \ { x > 1 \} \)

Here it can be confusing.

The same name \(x \) stands for both the value of \(x \) before and after the assignments.

If you get confused, just rename the variable:

\(\{ x_0 > 0 \} \ x_1 := x_0 + 1 \ { x_1 > 1 \} \)

When substituting, \(x_1 > 1 \) becomes \(x_0 + 1 > 1 \), which you can deduce from \(x_0 > 0 \).
1.3.3. **Conditional Rule.** Consider the following Hoare triple:

\[
\{ Q \} \\
\text{if condition } B \text{ then} \\
P_1 \\
\text{else} \\
P_2 \\
\text{end if} \\
\{ R \}
\]

Theorem. If the Hoare triples \(\{ Q \land B \} \quad P_1 \{ R \} \) and \(\{ Q \land B' \} \quad P_2 \{ R \} \) hold, then the Hoare triple above holds.

Example. [7, Exercise 11 p. 78]

1.3.4. **Loop Rule.** Consider the following Hoare triple:

\[
\{ Q \} \\
\text{while condition } B \text{ do} \\
P \\
\text{end while} \\
\{ R \}
\]

\(\{ Q \} \) describes the state of the program before the loop.

We need to have a predicate which describes the state of the program DURING the loop:

The loop invariant \(\{ S \} \)

Most of the time, \(\{ Q \} \) will do the job, but not always.

Theorem. If the Hoare triple \(\{ S \land B \} \quad P \quad \{ S \} \) holds, then the following Hoare triple will hold:

\[
\{ S \} \\
\text{while condition } B \text{ do} \\
P \\
\text{end while} \\
\{ S \land B' \}
\]

1.3.5. **A simple example.** Consider this little program:

```plaintext
Product(x,y)  // Precondition : x and y are non-negative integers  // Postcondition : returns the product of x and y
begin
  i := 0;
  j := 0;
  while ( (i=x)' ) do
    j = j + y;
    i := i + 1;
  end while
  // Assertion : \{ j = xy \}
  return(j);
end;
```
It’s pretty clear that this algorithm it’s correct. Let’s check it anyway to see how it works.

Démonstration. We need a loop invariant, which will describe the state of the program after \(k \) iterations. A reasonable guess is \(S : j = iy \)

Let \(i_k, j_k \) and \(S_k \) be the value of \(i, j \) and \(S \) after \(k \) iterations.

Base case : using the assignment rule, \(i_0 = 0 \) and \(j_0 = 0 \) so \(S_0 \) holds.

Induction step :
Assume the invariant holds after \(k - 1 \) iterations : \(j_{k-1} = i_{k-1}y \)
We need to prove that the invariant is preserved by the \(k \) th iteration. Otherwise said, we have to check that the following Hoare triple holds :

\[
\{ S_{k-1} \land (i = x) \}' \}
\]
\[
j_k := j_{k-1} + y ;
\]
\[
i_k := i_{k-1} + 1 ;
\]
\[
\{ S_k \}
\]

Let’s applying the assignment rule.
By substituting \(i_k \) and \(j_k \) by the expressions they have been assigned with, we get :

\[
S_k \iff j_k = i_k y
\]
\[
\iff j_{k-1} + y = (i_{k-1} + 1)y \quad \text{(By the substitution rule)}
\]
\[
\iff i_{k-1} y + y = (i_{k-1} + 1)y \quad \text{(By } S_{k-1})
\]
\[
\iff i_{k-1} y + y = i_{k-1} y + y
\]

So, \(S_k \) indeed holds.

By induction, after any number \(k \) of iterations, \(S_k \) still hold.

At the end, both \(S_k \) and \(i = x \) hold, so, as expected : \(j = iy = xy \)

Remarque. We have proved that after the end of the execution the result is correct. But what if the program does not terminate and loop forever? This is not usually consider a proper behavior.

We only have spoken about partial-correctness.

A full proof of correctness needs also a proof of termination!

1.3.6. A more sophisticated example : The Euclidean algorithm.

\texttt{GCD}(a,b)

Begin

// Precondition : a and b are non-negative integers
// with a\textgreater{}=b.

// Postcondition :
// returns \text{gcd}(a,b), the greater common divisor of
// a and b.

Local variables : i, j, q, r

i :=a;

j :=b;

while \(j > 0 \) do

// Assertion :
// r is the rest of the integer division i/j
r := i mod j;
i := j;
j := r;
end while
// Assertion : i is the gcd of a and b.
return(i);
end;

Exercise 1. Use the Euclidean algorithm to compute:
GCD(8,8), GCD(14,4), GCD(31,17).

Here the proof of correctness of the algorithm is non-trivial.

Démonstration. Let \(i_k\) and \(j_k\) be the value of \(i\) and \(j\) after \(k\) iterations.
We need to find an invariant which describes the state of the program after each iteration.

Take \(S_k : \gcd(i_k, j_k) = \gcd(a, b)\).

1. Base case :
 Before the loop, \(i_0 = a\) and \(j_0 = b\).
 So the invariant \(S_0\) holds : \(\gcd(i_0, j_0) = \gcd(a, b)\);

2. Induction step :
 Assume \(S_{k-1}\) holds, that is \(\gcd(i_{k-1}, j_{k-1}) = \gcd(a, b)\).
 We just need to prove that \(\gcd(i_k, j_k) = \gcd(i_{k-1}, j_{k-1})\).
 By the assignment rule, we have :
 - \(r\) is the rest of the division of \(i_{k-1}\) by \(j_{k-1}\),
 - \(i_k = j_{k-1}\),
 - \(j_k = r\).
 So, by the definition of the integer division, we have :
 \[i_{k-1} = qj_{k-1} + j_k\]
 for some integer \(q\).

 (a) Assume \(x\) divides both \(i_k\) and \(j_k\).
 Then, of course \(j_{k-1}\), since \(j_{k-1} = i_k\).
 By the equation above, \(x\) also divides \(i_{k-1}\).

 (b) Assume \(x\) divides both \(i_{k-1}\) and \(j_{k-1}\).
 Then of course \(x\) divides \(i_k\).
 Once again, using the equation above, \(x\) also divides \(j_k\).

 Therefore, \(\gcd(i_k, j_k) = \gcd(i_{k-1}, j_{k-1}) = \gcd(a, b)\), as wanted.

3. At the end :
 By induction, the loop invariant \(S\) still holds : \(\gcd(i, j) = \gcd(a, b)\)
 Moreover, the loop condition failed : \(j = 0\).
 So, \(\gcd(a, b) = \gcd(i, j) = \gcd(i, 0) = i\), as expected.

\[\square\]
1.4. Conclusion

1.4.1. A note on automatic program proving:
- There is no mechanical way to decide even if a program terminates or not.
- Traditional imperative languages:
 - Automatic proving is very difficult because of side effects
 - Side effects need to be considered as some form of output
- Functional languages (lisp, scheme, ML, caml):
 - Designed to make it easier to prove correctness
 - Fun to program. Try them!
- Two difficulties:
 - Finding the correct assertions
 - Checking that the implications hold
- Mixed approach:
 - The programmer gives the main assertions
 - The prover derives the other assertions

1.4.2. Check assertions in your programs!
- Use static type checking / assert / exceptions
- When debugging, you can ask for all assertions to be checked
- Documentation
- Help for the proof