CHAPTER 1

Relations (section 4.1,
4.2 and 4.4)

1.1. Introduction

A mere set of words would not make a
good dictionary.

It would be a pain to find a particular
word!

A usable dictionary has some structure:
the words are sorted.

In general, the more structure a set have,
the more useful it is.

A way to bring structure into this set is
to describe the relations between its el-
ements, or between its elements and the
elements of another set.

In this section we will see how we can
formalize and study relations.

ExXEMPLE. Imagine you want to build a
house.

Figure 1.1.1 shows the tasks that need
to be completed.

Let S:={F,W,E,I,O, R} be the set of
all tasks.

Problem: can we do the tasks in any or-
der 7

For example, it would be better to build
the walls AFTER the foundations!

E: electricity I: paint indoor

I: paint indoor

|E: electricity |

[R: roof]| [P: plumbery| [O: paint outdoor |

FIGURE

1.1.2. Constraints
between the tasks to
build a house

S in itself does not contain enough infor-
mation to choose a correct order.

Set of constraints: p := {(F, W), (W,0), (W, E), (R, E), (R,I)}.

This set of constraints gives some struc-
ture to .S, and makes it useful.

1.2. Relations

1.2.1. Definitions.
DEFINITION. A binary relation on a set
S is a subset p of S x S.
Let = and y be two elements of S.
Then z is in relation with y (denoted
z py) i (z,y) € p.

EXEMPLE. Let p be the relation “is a
prerequisite for’:

p={F W), (W, 0),(
Then, (F, W) € p, but

W.E),(R,E),(R,1)}
(1,0) ¢ p.

F: foundations

[O: painP@ut’ddblV}/ is true, whereas I p O is false.

FiGure 1.1.1. Tasks
to build a house

A relation can be defined by a property.

EXERCICE 1. Let S := {1,2,3,4,5}. Draw
the relations defined by:

(1) = py yiff 2 =y;

[
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(2) zppyiff @ < y;
(3) = p3 y iff z divides y;
(4) z py y il  — y is even.

DEFINITION. A binary relation between
two sets S and 7' is a subset p of S x T

A n-ary relation between n sets S1,..., 5,
is a subset p of S X -+ X S),.

EXEMPLE. Let M be a set of male and
F a set of female students.

We can define the relation “is married
to”.

1.2.2. Basic properties of rela-
tions. Isthere anything particular about
the relation “is married to” ?

DEFINITION. Let p be a relation between
S and T.

e S is one-to-one if any element
of S and T appears at most
once in p;

e Sis one-to-many if any element
of T appears at most once in p;

S T

e Sis many-to-one if any element
of S appears at most once in p;

S T

iﬁ

e S is many-to-many in all other
cases.

EXEMPLE. Is z lower or equal to itself 7

DEFINITION. A relation p on a set S is
reflexive iff

VzeS)zpa.

EXEMPLE. Assume z is equal to y. Is y
equal to x 7

DEFINITION. A relation p on a set S is
symmetric iff

(Ve e S)(Vy € S) (x py) < (y p )

ExEMPLE. Assume z < y and y < =z.
What can you say about x and y?

DEFINITION. A relation p on a set S is
antisymmetric iff

(Vz € S)(Vy € S)[(z py) and (y p 2)] — (x
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ExeEmMpPLE. Assume z < y and y < z.
What can you say about x and z7

DEFINITION. A relation p on a set S is
transitive iff

(Vx e S)(Vy € S)(Vz € S)[(z p y) and (y p 2)] — (x p 2=

EXEMPLE. What are the properties of
the following relations
(1) <GS =
(2) “is married to”;
(3) “is a friend of”;
(4) “has the same color than”.

1.2.3. Operations on relations.
A relation is basically a set. So, we can
use all usual set operations on relations.

REMARQUE. Let S and T be two sets.

The powerset p(S x T) is the set of all
binary relations between S and T

DEFINITION. Let p and o be two rela-
tions between S and T.

We can construct the following new re-
lations:

e union: pUo,

e intersection: pNo,
e complement: p’,

[ ]

EXEMPLE. Let S := N.

(1) What is the union of <and =?

(2) What is the intersection of <
and >7?

(3) What is the union of < and >?

(4) Is <a sub relation of <7

1.2.4. Closure of a relation.

EXEMPLE. Lets come back to the exam-
ple of the house building.

Do you have to do the electricity after
the foundations 7

Foundations is not a direct prerequisite
for electricity.

However, it still needs to be done before
electricity.

The relation “has to be done before” is
transitive, and contains the relation

I: paint indoor

|E: electricity |

[R: roof]| [P: plumbery|

[O: paint outdoor |

FIGURE

1.2.1. Constraints
between the tasks to
build a house

“is a prerequisite for”. It’s the transitive
closure of “is a prerequisite for”.

DEFINITION. Let p be a relation.

The transitive closure of p is the smallest
transitive relation p*containing p.

EXERCICE 2. Draw the transitive clo-
sure of “is a prerequisite for”.

PrOBLEM 1.2.1. Is there an algorithm
for computing the transivite relation of
a relation?

ALGORITHME 1.2.2. Construction of the
transitive closure p*.

pr = p;

Find x, y, z such that (x p*y),
(y p*z), and (z p*2);

If no such triple exists, p*is tran-
sitive; Exit;

pr=p U{(z,2)};

Repeat at step 2.

(4)

(5)
REMARQUE. The order in which you add
the pairs to p is irrelevant.

EXEMPLE. Draw the relation “has to be
done before” (Figure 1.4.1).
DEFINITION. Let p be a relation.

The reflexive closure of p is the smallest
reflexive relation containing p.

The symmetric closure of p is the small-
est symmetric relation containing p.

EXERCICE 3. Consider the following re-
lation:
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(1) Draw its reflexive closure
(2) Draw its symmetric closure
(3) Draw its transitive closure

(4) Draw its antisymmetric closure

REMARQUE. The antisymmetric closure
of a relation cannot be uniquely defined!

1.3. Equivalence relations

ExEMPLE. Consider a set of cars, and
the relation “has the same color as”.

What are the properties of this relation?

DEFINITION. An equivalence relation is
a relation which is

(1) Reflexive
(2) Symmetric
(3) Transitive

DEFINITION. Let p be a relation on a set
S, and z be an element of S.

The equivalence class of x is the set [x]of
all elements y such that = p y.

EXEMPLE. The equivalence class of a car
is the set of all cars having same color.

REMARQUE. If z p y, then [z] = [y].

ExEMPLE. Consider the relation =3 on
N defined by x =3 y iff 3 divides x — y

(we also say that = and y are congruent
modulo 3: x =y (mod 3))

What are the equivalence classes?

DEFINITION. A partition of a set S is a
collection of subsets {Aj,..., Ag} of S
such that:

(1) AiU---UA, =S
(2) AinA; =0 for any ¢, j.

ExempLE. Consider a set S of car, whose
olor are either red, blue, or green.

ne the following subsets of S:
blue cars), and G (green

Then, {R, B,G} is a partition of S.

The equivalence relation “has the same
color” and the partition of the cars by
color are closely related.

THEOREME. In general:

(1) An equivalence relation on S de-
fines a unique partition of S.

(2) A partition of S defines a unique
equivalence relation on S.

Proor. Left as exercise:

(1) Counstruct the collection {Ay, ...
and prove it is indeed a parti-
tion of S.

(2) Construct the relation p, and
prove it’s indeed an equivalence
relation.

O

DEFINITION. Let S be a set, and p be a
relation on S.

The set of all the equivalence classes is
called the quotient of S by p.

REMARQUE. This method is used a lot
in set theory:

Construction of Z from N.

Construction of Z/nZ (integers modulo
n) from Z.

Construction of Q from Z.

1.4. Partially Ordered Sets

ExEmMPLE. What are the properties of
the relation “has to be done before” on
the tasks to build a house ?

DEFINITION. A partially ordered set (or
poset) is a set S with a relation p which
is

(1) Reflexive

(2) Antisymmetric

7Ak}7
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(3) Transitive I: paint indoor

ExXEMPLE. Which of the following are
posets ?

|E: electricity | [R: roof| [P: plumbery]| [O: paint outdoor|

(1) ({1,2,3,4}, <);

(2) ({1,2,3,4}, <);

(3) ({172a374}7:); - -

(4) ({1,2,3,4},p), with 2 p y iff 2

divides y. .
(5) (p({1,2,3,4}),C). IGURE
{ D<) 1.4.1. Constraints

1.4.1. Drawing posets; Hasse di- between the tasks to

agrams. build a house

DEFINITION. Some names:
Schedule the tasks between 2 workers to

Node (or vertez) optimize the completion time:

Predecessor
Immediate predecessor
M('mmal ement ‘ Day 1 ‘ Day 2 ‘ Day 3 ‘ Day 4 \ Day 5 \ Day 6 \ Day 7 ‘
Minimal element

Worker 1
Least element T
Greatest element orker

DEFINITION. The Hasse diagram of a What if there is one worker ?
poset is a drawing of this poset such that:

e If © p y, then y is higher than

; [ Day 1 [ Day 2 [ Day 3 [ Day 4 [ Day 5 | Day 6 | Day 7 |
e The loops are not drawn; ’ Worker 1 \ \ \ \ \ \ \ ‘
e There is a segment linking x

and y iff z is an immediate pre-  What if there are three workers ?

decessor of y.

ExEMPLE. Draw all posets on 1, 2, 3, 4 ’

indistinet nodos. | Day 1 | Day 2 [ Day 3 | Day 4 | Day 5 [ Day 6 | Day7 |

How many such posets are there on 10 Worker 1
? Worker 2

nodes
Worker 3

1.4.2. Scheduling. Scheduling a set
of tasks consist in allocating tasks to re-

> . . ProprosITION. Consider the problem of
sources, subject to certain constraints.

scheduling n tasks on p processors, sub-
EXEMPLE. Consider the house building Jject to precedence constraints, with the
problem, with the following assumptions: —same assumptions and goal as above.

e All tasks take the one day to e 1 or 2 processors: algorithms in
complete; O(n?);

e One worker can only work on e 3 processors: complexity unknown;
one task every day; e p processors: NP-complete

e It does not save time to have (basically the only known algo-
two workers working on the same rithm is exhaustive search);

task. e oo processors: O(n).
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This is typical from scheduling problems,
where a very small change in the con-
straints can make huge differences in the
complexity of the problems.

Also, usually the complexity is as follow:

e No constraints: low complex-
ity;

e Some constraints: higher and
higher complexity;

e More constraints: NP-complete.
The only known algorithm is
exhaustive search through all plau-
sible cases (branch-and-cut);

e Even more constraints: still NP-
complete, but easier. Indeed
more and more cases can be thrown
away very early.

Having very good scheduling algorithms
is vital in industry, because a 1% differ-
ence in completion time (for example)
can save thousands of dollars. Conse-
quently, research in this topic is well fi-
nanced!

1.5. Conclusion

e The more structure a set has,
the more useful it is.

e Defining a relation is a way to
add structure to a set.

e Relations, posets, equivalence
relations, ... are just abstract
models of natural notions com-
monly used in real life.



