
CHAPTER 1

Relations (section 4.1,
4.2 and 4.4)

1.1. Introduction

A mere set of words would not make a
good dictionary.

It would be a pain to �nd a particular
word!

A usable dictionary has some structure:
the words are sorted.

In general, the more structure a set have,
the more useful it is.

A way to bring structure into this set is
to describe the relations between its el-
ements, or between its elements and the
elements of another set.

In this section we will see how we can
formalize and study relations.

Exemple. Imagine you want to build a
house.

Figure 1.1.1 shows the tasks that need
to be completed.

Let S := {F,W,E, I,O,R} be the set of
all tasks.

Problem: can we do the tasks in any or-
der ?

For example, it would be better to build
the walls AFTER the foundations!

W: walls

E: electricity

R: roof

I: paint indoor

O: paint outdoorF: foundations

P: plumbery

Figure 1.1.1. Tasks
to build a house

F: foundations

W: walls

E: electricity R: roof

I: paint indoor

O: paint outdoorP: plumbery

Figure

1.1.2. Constraints
between the tasks to
build a house

S in itself does not contain enough infor-
mation to choose a correct order.

Set of constraints: ρ := {(F,W ), (W,O), (W,E), (R,E), (R, I)}.
This set of constraints gives some struc-
ture to S, and makes it useful.

1.2. Relations

1.2.1. De�nitions.

Définition. A binary relation on a set
S is a subset ρ of S × S.

Let x and y be two elements of S.

Then x is in relation with y (denoted
x ρ y) i� (x, y) ∈ ρ.

Exemple. Let ρ be the relation �is a
prerequisite for�:

ρ := {(F,W ), (W,O), (W,E), (R,E), (R, I)}

Then, (F,W ) ∈ ρ, but (I,O) /∈ ρ.

So, F ρ W is true, whereas I ρ O is false.

A relation can be de�ned by a property.

Exercice 1. Let S := {1, 2, 3, 4, 5}. Draw
the relations de�ned by:

(1) x ρ1 y i� x = y;
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(2) x ρ2 y i� x ≤ y;
(3) x ρ3 y i� x divides y;
(4) x ρ4 y i� x− y is even.

Définition. A binary relation between
two sets S and T is a subset ρ of S × T .

A n-ary relation between n sets S1, . . . , Sn

is a subset ρ of S1 × · · · × Sn.

Exemple. Let M be a set of male and
F a set of female students.

We can de�ne the relation �is married
to�.

1.2.2. Basic properties of rela-

tions. Is there anything particular about
the relation �is married to� ?

Définition. Let ρ be a relation between
S and T .

• S is one-to-one if any element
of S and T appears at most
once in ρ;

S T

• S is one-to-many if any element
of T appears at most once in ρ;

S T

• S ismany-to-one if any element
of S appears at most once in ρ;

S T

• S is many-to-many in all other
cases.

S T

Exemple. Is x lower or equal to itself ?

Définition. A relation ρ on a set S is
re�exive i�

(∀x ∈ S) x ρ x.

Exemple. Assume x is equal to y. Is y
equal to x ?

Définition. A relation ρ on a set S is
symmetric i�

(∀x ∈ S)(∀y ∈ S) (x ρ y) ↔ (y ρ x).

Exemple. Assume x ≤ y and y ≤ x.
What can you say about x and y?

Définition. A relation ρ on a set S is
antisymmetric i�

(∀x ∈ S)(∀y ∈ S)[(x ρ y) and (y ρ x)] → (x = y).
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Exemple. Assume x < y and y < z.
What can you say about x and z?

Définition. A relation ρ on a set S is
transitive i�

(∀x ∈ S)(∀y ∈ S)(∀z ∈ S)[(x ρ y) and (y ρ z)] → (x ρ z).

Exemple. What are the properties of
the following relations

(1) <, ≤, =;
(2) �is married to�;
(3) �is a friend of�;
(4) �has the same color than�.

1.2.3. Operations on relations.

A relation is basically a set. So, we can
use all usual set operations on relations.

Remarque. Let S and T be two sets.

The powerset ℘(S × T ) is the set of all
binary relations between S and T .

Définition. Let ρ and σ be two rela-
tions between S and T .

We can construct the following new re-
lations:

• union: ρ ∪ σ,
• intersection: ρ ∩ σ,
• complement: ρ′,
• . . .

Exemple. Let S := N.
(1) What is the union of <and =?
(2) What is the intersection of <

and >?
(3) What is the union of < and >?
(4) Is <a sub relation of ≤ ?

1.2.4. Closure of a relation.

Exemple. Lets come back to the exam-
ple of the house building.

Do you have to do the electricity after
the foundations ?

Foundations is not a direct prerequisite
for electricity.

However, it still needs to be done before
electricity.

The relation �has to be done before� is
transitive, and contains the relation

F: foundations

W: walls

E: electricity R: roof

I: paint indoor

O: paint outdoorP: plumbery

Figure

1.2.1. Constraints
between the tasks to
build a house

�is a prerequisite for�. It's the transitive

closure of �is a prerequisite for�.

Définition. Let ρ be a relation.

The transitive closure of ρ is the smallest
transitive relation ρ∗containing ρ.

Exercice 2. Draw the transitive clo-
sure of �is a prerequisite for�.

Problem 1.2.1. Is there an algorithm
for computing the transivite relation of
a relation?

Algorithme 1.2.2. Construction of the

transitive closure ρ∗.

(1) ρ∗ := ρ;
(2) Find x, y, z such that (x ρ∗y),

(y ρ∗z), and (x 6 ρ∗z);
(3) If no such triple exists, ρ∗is tran-

sitive; Exit;

(4) ρ∗ := ρ∗ ∪ {(x, z)};
(5) Repeat at step 2.

Remarque. The order in which you add
the pairs to ρ is irrelevant.

Exemple. Draw the relation �has to be
done before� (Figure 1.4.1).

Définition. Let ρ be a relation.

The re�exive closure of ρ is the smallest
re�exive relation containing ρ.

The symmetric closure of ρ is the small-
est symmetric relation containing ρ.

Exercice 3. Consider the following re-
lation:
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(1) Draw its re�exive closure
(2) Draw its symmetric closure
(3) Draw its transitive closure
(4) Draw its antisymmetric closure

Remarque. The antisymmetric closure
of a relation cannot be uniquely de�ned!

1.3. Equivalence relations

Exemple. Consider a set of cars, and
the relation �has the same color as�.

What are the properties of this relation?

Définition. An equivalence relation is
a relation which is

(1) Re�exive
(2) Symmetric
(3) Transitive

Définition. Let ρ be a relation on a set
S, and x be an element of S.

The equivalence class of x is the set [x]of
all elements y such that x ρ y.

Exemple. The equivalence class of a car
is the set of all cars having same color.

Remarque. If x ρ y, then [x] = [y].

Exemple. Consider the relation ≡3 on
N de�ned by x ≡3 y i� 3 divides x− y.

(we also say that x and y are congruent

modulo 3: x ≡ y (mod 3))
What are the equivalence classes?

Définition. A partition of a set S is a
collection of subsets {A1, . . . , Ak} of S
such that:

(1) A1 ∪ · · · ∪Ak = S
(2) Ai ∩Aj = ∅ for any i, j.

Exemple. Consider a set S of car, whose
color are either red, blue, or green.

De�ne the following subsets of S:

R (red cars), B (blue cars), and G (green
cars) .

Then, {R,B, G} is a partition of S.

The equivalence relation �has the same
color� and the partition of the cars by
color are closely related.

Théorème. In general:

(1) An equivalence relation on S de-

�nes a unique partition of S.
(2) A partition of S de�nes a unique

equivalence relation on S.

Proof. Left as exercise:

(1) Construct the collection {A1, . . . , Ak},
and prove it is indeed a parti-
tion of S.

(2) Construct the relation ρ, and
prove it's indeed an equivalence
relation.

�

Définition. Let S be a set, and ρ be a
relation on S.

The set of all the equivalence classes is
called the quotient of S by ρ.

Remarque. This method is used a lot
in set theory:

Construction of Z from N.
Construction of Z/nZ (integers modulo
n) from Z.
Construction of Q from Z.

1.4. Partially Ordered Sets

Exemple. What are the properties of
the relation �has to be done before� on
the tasks to build a house ?

Définition. A partially ordered set (or
poset) is a set S with a relation ρ which
is

(1) Re�exive
(2) Antisymmetric
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(3) Transitive

Exemple. Which of the following are
posets ?

(1) ({1, 2, 3, 4},≤);
(2) ({1, 2, 3, 4}, <);
(3) ({1, 2, 3, 4},=);
(4) ({1, 2, 3, 4}, ρ), with x ρ y i� x

divides y.
(5) (℘({1, 2, 3, 4}),⊆).

1.4.1. Drawing posets; Hasse di-

agrams.

Définition. Some names:

• Node (or vertex )
• Predecessor

• Immediate predecessor

• Maximal element

• Minimal element

• Least element

• Greatest element

Définition. The Hasse diagram of a
poset is a drawing of this poset such that:

• If x ρ y, then y is higher than
x;

• The loops are not drawn;
• There is a segment linking x
and y i� x is an immediate pre-
decessor of y.

Exemple. Draw all posets on 1, 2, 3, 4
indistinct nodes.

How many such posets are there on 10
nodes ?

1.4.2. Scheduling. Scheduling a set
of tasks consist in allocating tasks to re-
sources, subject to certain constraints.

Exemple. Consider the house building
problem, with the following assumptions:

• All tasks take the one day to
complete;

• One worker can only work on
one task every day;

• It does not save time to have
two workers working on the same
task.

F: foundations

W: walls

E: electricity R: roof

I: paint indoor

O: paint outdoorP: plumbery

Figure

1.4.1. Constraints
between the tasks to
build a house

Schedule the tasks between 2 workers to
optimize the completion time:

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Worker 1

Worker 2

What if there is one worker ?

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Worker 1

What if there are three workers ?

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day7

Worker 1

Worker 2

Worker 3

Proposition. Consider the problem of

scheduling n tasks on p processors, sub-

ject to precedence constraints, with the

same assumptions and goal as above.

• 1 or 2 processors: algorithms in
O(n2);

• 3 processors: complexity unknown;
• p processors: NP-complete
(basically the only known algo-
rithm is exhaustive search);

• ∞ processors: O(n).
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This is typical from scheduling problems,
where a very small change in the con-
straints can make huge di�erences in the
complexity of the problems.

Also, usually the complexity is as follow:

• No constraints: low complex-
ity;

• Some constraints: higher and
higher complexity;

• More constraints: NP-complete.
The only known algorithm is
exhaustive search through all plau-
sible cases (branch-and-cut);

• Even more constraints: still NP-
complete, but easier. Indeed
more and more cases can be thrown
away very early.

Having very good scheduling algorithms
is vital in industry, because a 1% di�er-
ence in completion time (for example)
can save thousands of dollars. Conse-
quently, research in this topic is well �-
nanced!

1.5. Conclusion

• The more structure a set has,
the more useful it is.

• De�ning a relation is a way to
add structure to a set.

• Relations, posets, equivalence
relations, . . . are just abstract
models of natural notions com-
monly used in real life.


