

Travaux Dirigés Polynomials nº1 Combinatorics and Computer Algebra Lecture

—MPRI master's—

Interpolation / Finite Differences / Newton Polynomials

The finite difference method is used, among other things, to calculate iteratively the values taken by a polynomial over the integers with no multiplication following a preliminary calculation. This method is also widely used in numerical analysis to calculate approximations of derivatives.

For n + 1 pairs (x_i, y_i) , we look for a function Φ such that $\Phi(x_i) = y_i$ for $0 \le i \le n$. In the case of polynomial interpolation, we look for the function Φ in the form of a polynomial. The problem is therefore reduced to finding a polynomial P of degree n such that $P(x_i) = y_i$ for $0 \le i \le n$.

1 Lagrange interpolation

► Exercice 1. (Existence and uniqueness)

Show that given n + 1 distinct pairs $(x_0, y_0), \ldots, (x_n, y_n)$ such that $x_i \neq x_j$, there is a unique polynomial P of degree n such that $P(x_i) = y_i$ for $0 \le i \le n$. We assume the following formula, which gives the Vandermonde determinant :

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = \prod_{i>j} (x_i - x_j)$$
(1)

Application : Calculate the interpolating polynomial by replacing the coordinates of the points in the polynomial expression and solve the linear system : find the polynomial interpolating a function passing through the points (-1, 2), (1, 4), (3, 2) and (5, 1).

► Exercice 2. (Second method : Lagrange method)

The Lagrange interpolating polynomial has the form

$$\Pi(x) := \sum_{i=0}^{n} y_i L_i(x) \tag{2}$$

where the

$$L_i(x) := \prod_{j=0, \ j \neq i}^n \frac{x - x_j}{x_i - x_j} \ . \tag{3}$$

are called Lagrange basis polynomials.

- 1. Show that $L_i(x_i) = 1$ and $L_i(x_k) = 0$ if $i \neq k$.
- 2. Deduce that for n+1 distinct pairs $(x_0, y_0), \ldots, (x_n, y_n)$, the Lagrange polynomial does indeed constitute an interpolation.
- 3. Calculate the interpolating polynomial of the function passing through the points (-1,3), (0,1), (1,2), (3,-1) and (4,-5).

2 Finite differences

Let P(X) be a polynomial. The finite difference operator notated Δ acts on the polynomial P(X) as follows :

$$\Delta P(X) := P(X+1) - P(X).$$
(4)

▶ Exercice 3. Some properties of the Δ operator

- 1. Let $Q(X) := X^3 + 2X^2 + X + 2$. Calculate $\Delta Q(X)$.
- 2. Show that Δ is linear, i.e. if a and b are constants and if P(X) and Q(X) are polynomials, then

$$\Delta(aP(X) + bQ(X)) = a\Delta P(X) + b\Delta Q(x).$$
(5)

3. Show that for two polynomials P and Q, we have

$$\Delta(P(X)Q(X)) = Q(X+1)\Delta P(X) + P(X)\Delta Q(X).$$
(6)

• Exercice 4. Iteration of the Δ operator

By induction, we define $\Delta^0 P(X) := P(X)$ and $\Delta^{n+1} P(X) := \Delta(\Delta^n P(X))$ for all $n \ge 0$.

- 4. Using the polynomial Q(X) from exercise 1, calculate $\Delta^n Q(X)$ for all $n \ge 0$. What do you notice?
- 5. Show generally that if $P(X) := \sum_{i=0}^{d} a_i X^i$ is a polynomial of degree d (i.e. $a_d \neq 0$), then $\Delta P(X)$ is a polynomial of degree d-1. What is the leading coefficient of $\Delta P(X)$?
- 6. Deduce that $\Delta^d P$ is a constant polynomial equal to $d!a_d$.

▶ Exercice 5. Calculating the values of a polynomial over the integers

- 7. Let P = aX + b be a polynomial of degree 1 given by P(0) and P(1). What is the polynomial ΔP ? Is it possible to calculate $P(2), P(3), \ldots$ without calculating P(X)?
- 8. If $P = aX^2 + bX + c$ is a polynomial of degree 2 given by P(0), P(1) and P(2), How can we calculate $\Delta^2 P$? How can we calculate $\Delta P(2), \Delta P(3), \Delta P(4) \dots$? How can we calculate $P(3), P(4), \dots$?
- 9. Let P(X) be a polynomial of degree d whose values for 0, 1, ..., d are known. How can we calculate a_d with no multiplication?
- 10. Provide an algorithm that calculates the values of P for $d+1, d+2, \ldots$ with no multiplication.

▶ Exercice 6. Logic test

Continue the following sequences

- 11. $U = 1, 3, 5, 7, 9, \dots;$
- 12. $V = 1, 5, 11, 19, 29, \dots;$
- 13. $W = 1, 9, 29, 67, 129, 221, \dots;$
- 14. $X = 1, 13, 73, 241, 601, 1261, 2353, \dots;$

► Exercice 7. Newton polynomials

The following polynomial is called a Newton polynomial of order n for any $n \leq 0$:

$$A_n(X) := \frac{X(X-1)(X-2)(X-3)\dots(X-n+1)}{n!}$$
(7)

- 15. What is the degree of $A_n(X)$?
- 16. Show that for n > 0 we have $\Delta A_n(X) = A_{n-1}(X)$.
- 17. Show that for any polynomial P(X) of degree d there is a unique d + 1-tuple of coefficients $(c_0, \ldots c_d)$ such that

$$P(X) = \sum_{i=0}^{d} c_i A_n(X) \,. \tag{8}$$

- 18. How can we calculate the values of c_i efficiently?
- 19. Deduce an interpolation algorithm for a function f whose values are known over the integers $0, 1, \ldots, n$.