Sorting monoids and algebras on Coxeter groups

Florent Hivert¹ Anne Schilling² Nicolas M. Thiéry^{2,3}

¹LITIS/LIFAR, Université Rouen, France

 2 University of California at Davis, USA

³Laboratoire de Mathématiques d'Orsay, Université Paris Sud, France

Davis, June 5th of 2009

arXiv:0711.1561v1 [math.RT] arXiv:0804.3781v1 [math.RT] + research in progress ...

The Big Picture

1423

4123

4312

Underlying combinatorics: right permutohedron

4321

Underlying combinatorics: right permutohedron

4321

Underlying combinatorics: right permutohedron

Elementary transpositions: s_1, s_2, s_3, \dots

4321

Underlying combinatorics: right permutohedron

Elementary transpositions: s_1, s_2, s_3, \ldots

Elementary bubble antisort operators: $\pi_1, \pi_2, \pi_3, \dots$

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

1 5 4 2 3

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

5 2 1

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

2 3 4 1 5

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

3 2 1 5

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

4 1 5

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

$\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

5 4 1

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

4 3 1

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

354

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

2 5

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

2 1 3

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

2 1 3

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

5 1 2

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

 $\pi_1, \pi_2, \pi_3, \ldots$ antisort 12345 into 54321 There is no return!

New operator π_0 : acts between first and last letter

Proposition (HT'08)

Coxeter groups

Definition (Coxeter group W)

Generators : $(s_i)_{i \in S}$ (simple reflections)

Relations: $s_i^2 = 1$ and $s_i s_j \cdots = s_j s_i \cdots$, for $i \neq j$

Group algebra: $\mathbb{C}[W]$

$$s_i^2=1$$
 for all $1\leq i\leq n$, $s_is_j=s_js_i$ for all $|i-j|>1$, $s_{i+1}s_i=s_{i+1}s_is_{i+1}$ for all $1\leq i\leq n-1$

Coxeter groups

Definition (Coxeter group *W*)

Generators : $(s_i)_{i \in S}$ (simple reflections)

Relations: $s_i^2 = 1$ and $s_i s_j \cdots = s_j s_i \cdots$, for $i \neq j$

Group algebra: $\mathbb{C}[W]$

Example (Type A_n : symmetric group \mathfrak{S}_{n+1})

Generators: $(s_i)_{i=1,\dots,n}$ (elementary transpositions)

Relations:

$$s_i^2=1$$
 for all $1\leq i\leq n$, $s_is_j=s_js_i$ for all $|i-j|>1$, $s_is_{i+1}s_i=s_{i+1}s_is_{i+1}$ for all $1\leq i\leq n-1$.

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 \ge 2 - 3 \implies 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

1234

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

2134

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

- Type-free induction strategy
- Case by case induction step
 Brute force on computer for the exceptional types (E₈!)

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Type-free induction strategy
- Case by case induction step
 Brute force on computer for the exceptional types (E₈!)

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Similar algorithms for types B, C, D

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D

Proof

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < \underline{4} < \underline{3} < \underline{2} < \underline{1}$

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

Proof

• Type B: $0 > 2 - 3 \Rightarrow 4$ 1 < 2 < 3 < 4 < 4 < 3 < 2 < 1

Proposition (S.,T.,2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

• Type B:
$$0 > 2 - 3 \Rightarrow 4$$
 $1 < 2 < 3 < 4 < 4 < 3 < 2 < 1$

- Type-free induction strategy
- Case by case induction step.

Proposition (S., T., 2007)

- Similar algorithms for types B, C, D
- Existence for all types (including twisted)

Proof

• Type B: $0 > 2 - 3 \Rightarrow 4$ 1 < 2 < 3 < 4 < 4 < 3 < 2 < 1

- Type-free induction strategy
- Case by case induction step Brute force on computer for the exceptional types (E_8 !)

 π_0, π_1, π_2 on C_2

 π_0, π_1, π_2 on C_2

 $\pi_0, \pi_1, \pi_2 \text{ on } C_2$ Quotient at level 0 (Steinberg torus)

 π_0, π_1, π_2 on C_2

Quotient at level 0 (Steinberg torus)

Alcove picture at level 1

Type free geometric argument (II)

$$\widetilde{A}_2 = A_2^{(1)}$$

$$0 \xrightarrow{2} 1 \xleftarrow{2} 2$$
$$\widetilde{C}_2 = C_2^{(1)}$$

$$\widetilde{C}_2 = C_2^{(1)}$$

$$0 \longrightarrow 1 \xrightarrow{3} 2$$
$$\widetilde{G}_2 = G_2^{(1)}$$

$$\widetilde{G}_2 = G_2^{(1)}$$

0-(Iwahori)-Hecke algebras (or monoids)

Definition (0-Hecke algebra H(W)(0))

Generators : $(\pi_i)_{i \in S}$

Relations: $\pi_i^2 = \pi_i$ and $\underbrace{\pi_i \pi_j \cdots}_{m_{i,i}} = \underbrace{\pi_j \pi_i \cdots}_{m_{i,i}}$ for $i \neq j$

Basis: $(\pi_w)_{w \in W}$

Example (Type A_n)

Generators: $(\pi_i)_{i=1,...,n}$

Relations

$$\pi_i^2 = \pi_i$$
 for all $1 \le i \le n$, $\pi_i \pi_j = \pi_j \pi_i$ for all $|i - j| > 1$, $\pi_{i + 1} \pi_i = \pi_{i + 1} \pi_i \pi_{i + 1}$ for all $1 \le i \le n - 1$

Definition (0-Hecke algebra H(W)(0))

Generators : $(\pi_i)_{i \in S}$

Relations: $\pi_i^2 = \pi_i$ and $\underbrace{\pi_i \pi_j \cdots}_{m_{i,i}} = \underbrace{\pi_j \pi_i \cdots}_{m_{i,i}}$ for $i \neq j$

Basis: $(\pi_w)_{w \in W}$

Example (Type A_n)

Generators: $(\pi_i)_{i=1,...,n}$

Relations:

$$\begin{split} \pi_i^2 &= \pi_i & \text{for all } 1 \leq i \leq n, \\ \pi_i \pi_j &= \pi_j \pi_i & \text{for all } |i-j| > 1, \\ \pi_i \pi_{i+1} \pi_i &= \pi_{i+1} \pi_i \pi_{i+1} & \text{for all } 1 \leq i \leq n-1. \end{split}$$

Take q_1 and q_2 parameters, and set $q:=-rac{q_1}{q_2}.$

Definition (Hecke algebra $H(W)(q_1,q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Take q_1 and q_2 parameters, and set $q:=-rac{q_1}{q_2}.$

Definition (Hecke algebra $H(W)(q_1,q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Hecke algebras

Take q_1 and q_2 parameters, and set $q:=-\frac{q_1}{q_2}$.

Definition (Hecke algebra $H(W)(q_1, q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Hecke algebras

Take q_1 and q_2 parameters, and set $q:=-\frac{q_1}{q_2}$.

Definition (Hecke algebra $H(W)(q_1, q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Hecke algebras

Take q_1 and q_2 parameters, and set $q:=-\frac{q_1}{q_2}$.

Definition (Hecke algebra $H(W)(q_1, q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Take q_1 and q_2 parameters, and set $q:=-rac{q_1}{q_2}.$

Definition (Hecke algebra $H(W)(q_1,q_2)$)

Generators : $(T_i)_{i \in S}$ Relations: $(T_i - q_1)(T_i - q_2) = 0$ and $\underbrace{T_i T_j \cdots}_{m_{i,j}} = \underbrace{T_j T_i \cdots}_{m_{i,j}}$, for $i \neq j$ Basis: $(T_w)_{w \in W}$

- At q=1: group algebra $\mathbb{C}[W]$
- At q = 0: 0-Hecke algebra H(W)(0)
- At $q_1 = q_2 = 0$: nilCoxeter algebra
- At q not 0 nor a root of unity: isomorphic to $\mathbb{C}[W]$

Geometric questions: Fl_n variety of complete flags in \mathbb{C}^n

$$\emptyset = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n$$

with dim $V_i = i$

Cohomology ring (Borel)

$$H^*(\mathrm{Fl}_n,\mathbb{Z})\cong\mathbb{Z}[x_1,\ldots,x_n]/I_n$$

with I_n ideal generated by symmetric functions without constant term

Schubert classes \leftrightarrow Schubert polynomials \mathfrak{S}_w , $w \in S_n$

Geometric questions:

 Fl_n variety of complete flags in \mathbb{C}^n

$$\emptyset = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n$$

with dim $V_i = i$

Cohomology ring (Borel)

$$H^*(\mathrm{Fl}_n,\mathbb{Z})\cong\mathbb{Z}[x_1,\ldots,x_n]/I_n$$

with I_n ideal generated by symmetric functions without constant term

Schubert classes \leftrightarrow Schubert polynomials \mathfrak{S}_w , $w \in S_r$

Motivation

Geometric questions:

 Fl_n variety of complete flags in \mathbb{C}^n

$$\emptyset = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n$$

with dim $V_i = i$

Cohomology ring (Borel)

$$H^*(\mathrm{Fl}_n,\mathbb{Z})\cong\mathbb{Z}[x_1,\ldots,x_n]/I_n$$

with I_n ideal generated by symmetric functions without constant term

Schubert classes \leftrightarrow Schubert polynomials \mathfrak{S}_w , $w \in S_n$

Algebraic definition of Schubert polynomials

Definition (Schubert polynomials, Lascoux-Schützenberger)

$$\mathfrak{S}_{w} = \partial_{w^{-1}w_0} (x_1^{n-1} x_2^{n-2} \cdots x_{n-1})$$

where ∂_i is the divided difference operator

$$\partial_i f = \frac{1 - s_i}{x_i - x_{i+1}} f$$
 for $f \in \mathbb{Z}[x_1, \dots, x_n]$

Relations

$$\begin{aligned} \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \partial_i \partial_i &= \partial_i \partial_i & \text{for } |i-j| > 1 \end{aligned}$$

Algebraic definition of Schubert polynomials

Definition (Schubert polynomials, Lascoux-Schützenberger)

$$\mathfrak{S}_{w} = \partial_{w^{-1}w_0} (x_1^{n-1} x_2^{n-2} \cdots x_{n-1})$$

where ∂_i is the divided difference operator

$$\partial_i f = \frac{1 - s_i}{x_i - x_{i+1}} f$$
 for $f \in \mathbb{Z}[x_1, \dots, x_n]$

Relations

$$\begin{split} \partial_i^2 &= 0 \\ \partial_i \partial_{i+1} \partial_i &= \partial_{i+1} \partial_i \partial_{i+1} \\ \partial_i \partial_j &= \partial_j \partial_i \qquad \text{for } |i-j| > 1 \end{split}$$

Combinatorial formulation of Schubert polynomials

Theorem (Fomin, Kirillov)

Coefficient of $x_1^{a_1} \cdots x_n^{a_n}$ in $\mathfrak{S}_w(x_1, \dots, x_n)$: number of factorizations of w in the nilCoxeter algebra into factors of length a_1, \dots, a_n that are strictly decreasing

Replace nilCoxeter algebra by the 0-Hecke algebra $(T_i^2 = 0 \text{ is replaced by } \pi_i^2 = \pi_i)$ \rightarrow Grothendieck polynomials

Combinatorial formulation of Schubert polynomials

Theorem (Fomin, Kirillov)

Coefficient of $x_1^{a_1} \cdots x_n^{a_n}$ in $\mathfrak{S}_w(x_1, \dots, x_n)$: number of factorizations of w in the nilCoxeter algebra into factors of length a_1, \ldots, a_n that are strictly decreasing

Replace nilCoxeter algebra by the 0-Hecke algebra $(T_i^2 = 0 \text{ is replaced by } \pi_i^2 = \pi_i)$ → Grothendieck polynomials

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]$:
- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

Softling angebras

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants

```
• \mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]:
```

•
$$\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$$
:

•
$$\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$$
:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants

```
• \mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]:
```

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants:

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]$:
- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants:

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]$:
- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants:

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]$:
- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants:

- $\mathbb{Q}[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots]$:
- $\mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots]$:
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$:

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\mathbb{Q}[s_1, s_2, \dots]$: algebra of the symmetric group
- Bubble antisort: $\mathbb{Q}[\pi_1, \pi_2, \dots]$: 0-Hecke algebra
- Bubble sort: $\mathbb{Q}[\overline{\pi}_1, \overline{\pi}_2, \dots]$: idem

Variants:

- $\mathbb{Q}[\pi_1, \pi_2, \dots, s_1, s_2, \dots]$: Hecke group algebra
- $\mathbb{Q}[\pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots]$: idem!
- $\mathbb{Q}[\pi_0, \pi_1, \pi_2, \dots]$: idem!

Theorem (HT 05, HT 06, HST 09)

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

Representation theory for $\langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$ Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

```
Representation theory for \langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle
Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis
```

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

```
Representation theory for \langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle
Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis
```

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants:

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

Representation theory for $\langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$ Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants:

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

```
Representation theory for \langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle
Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis
```

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants:

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

```
Representation theory for \langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle
Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis
```

- Transpositions: $\langle s_1, s_2, \dots \rangle$: symmetric group
- Bubble antisort: $\langle \pi_1, \pi_2, \dots \rangle$: 0-Hecke monoid
- Bubble sort: $\langle \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$: idem

Variants:

- $\langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$: ?
- $\langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$: ?
- $\langle \pi_0, \pi_1, \pi_2, \dots \rangle$: ?

Theorem (HST 09, work in progress)

Representation theory for $\langle \pi_1, \pi_2, \dots, \overline{\pi}_1, \overline{\pi}_2, \dots \rangle$

Combinatorics: left/right/Bruhat order, tilings of n-gons by rombis

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- · Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org

- Find combinatorial models for algebras and representations
- As simple as possible, but no simpler
- Concrete and effective
- · Find the right point of view where proofs become trivial
- Use representation theory and computer exploration as a guide
- Sage-Combinat: combinat.sagemath.org