Previous: Rappels de complexitéRappels de complexité Up: Recherche opérationnelle et Optimisation DiscrèteRecherche opérationnelle et Optimisation Discrète Next: OrdonnancementOrdonnancement
Document also available in PDF, Postscript, DVI, Text, LaTeX, LyX.

Programmation Linéaire

Chapitre 1  Programmation linéaire

1.1  Qu’est-ce que la programmation linéaire

1.1.1  Exemple: le problème du régime de Polly [1, p.3]

Quels choix pour Polly ?

Problème 1   Polly peut-elle trouver une solution ?

Comment formaliser le problème ? (modélisation)

Qu’est-ce qui fait la spécificité du problème ?

Savez-vous résoudre des problèmes similaires ?












1.1.2  Forme standard d’un problème de programmation linéaire

Problème 1   [1, p. 5]
Maximiser:            5*x1 + 4*x2 + 3*x3

Sous les contraintes: 2*x1 + 3*x2 +   x3 <=  5 

                      4*x1 +   x2 + 2*x3 <= 11

                      3*x1 + 4*x2 + 2*x3 <=  8

                      x1, x2, x3 >= 0

Minimiser:            3*x1 -   x2

Sous les contraintes: - x1 + 6*x2 -   x3 +   x4 >= -3 

                             7*x2        + 2*x4 =   5

                        x1 +   x2 +   x3        =   1

                                      x3 +   x4 <=  2

                       x2, x3 >= 0

Définition 1   Problème de programmation linéaire sous forme standard:

Maximiser:

z:=
n
j=1
cjxj

Sous les contraintes:

n
j=1
aijxj≤ bi, pour i=1,…,m
xj≥0, pour j=1,…,n

Un choix des variables (x1,…,xn) est appelé solution du problème.

Une solution est faisable si elle vérifie les contraintes.

z est appelé fonction objective. À chaque solution elle associe une valeur.

Une solution est optimale si elle est faisable et maximize la fonction objective.

Exercice 2   Peut-on mettre sous forme standard les exemples précédents ?

1.1.3  Existence de solutions optimales ?

Problème 3   [1, p. 7]

On considère les quatre problèmes de programmation linéaire standard suivants, écrits avec la syntaxe du système de calcul formel MuPAD:

Chvatal7a := [ [   x1      <= 3, 

                        x2 <= 7 ],

                3 +x1  +x2, 

               Nonnegative]

Chvatal7b := [ [   x1  +x2 <= 2, 

                -2*x1-2*x2 <= -10 ],

                 3*x1  -x2, 

               NonNegative]

Chvatal7c := [ [-2*x1  +x2 <= -1, 

                  -x1-2*x2 <= -2 ],

                   x1  -x2,

               NonNegative]:

extra     := [ [   x1  +x2 <= 1 ],

                   x1  +x2,

               NonNegative]:

Problème 4   Déterminer pour ces trois problèmes s’il y a des solutions optimales.












1.2  Algorithme du simplexe

1.2.1  Une pointe d’algèbre linéaire

Problème 5   Considérons le système suivant:
5  = s1       + 2*x1 + 3*x2 +   x3

11 =    s2    + 4*x1 +   x2 + 2*x3

8  =       s3 + 3*x1 + 4*x2 + 2*x3

Que peut-on dire dessus?

C’est un système linéaire à 6 inconnues et 3 équations.

L’ensemble des solutions est un sous espace de dimension 3 de 3, que l’on peut décrire en prenant comme paramètres x1, x2 et x3.

En effet, vu la forme triangulaire, s1, s2 et s3 s’expriment en fonction de x1, x2 et x3.

Transformer le système pour prendre comme paramètres s1, s2, et x1.

1.2.2  Premier problème

Problème 6   [1, p. 13]
Chvatal13 := [{2*x1 + 3*x2 +   x3 <= 5, 

               4*x1 +   x2 + 2*x3 <= 11, 

               3*x1 + 4*x2 + 2*x3 <= 8  }, 

               5*x1 + 4*x2 + 3*x3, 

              NonNegative]:

Solution faisable ?

Amélioration de la solution ?












Introduction de variables d’écart:

5  = s1       + 2*x1 + 3*x2 +   x3

11 =    s2    + 4*x1 +   x2 + 2*x3

8  =       s3 + 3*x1 + 4*x2 + 2*x3

----------------------------------

z  =            5*x1 + 4*x2 + 3*x3

En augmentant x1 jusqu’à 5/2, on fait tomber s1 à zéro.

On transforme le système, pour se ramener à une situation similaire à la précédente:

5/2 = x1       + 3/2*x2 + 1/2*x3 + 1/2*s1

1   =    s2    -   5*x2            - 2*s1

1/2 =       s3 - 1/2*x2 + 1/2*x3 - 3/2*s1

-----------------------------------------

z   = 25/2     - 7/2 x2 + 1/2*x3 - 5/2*s1

On augmente x3 jusqu’à 1, ce qui fait tomber s3 à 0:

1 = x3       -   x2 - 3*s1 + 2*s3

2 =    x1    + 2*x2 + 2*s1 -   s3

1 =       s2 - 5*x2 - 2*s1

---------------------------------

z = 13       - 3*x2 -   s1 -   s3

Et maintenant, que fait-on ?

1.2.3  Variables d’écart

Problème 7   Est-ce que l’introduction de ces variables change le problème ?

1.2.4  Tableaux

Problème 8   [1, p. 19]
Chvatal19 := [[  x1 + 3*x2   + x3 <= 3, 

                -x1         +3*x3 <= 2,

               2*x1 + 3*x2   - x3 <= 2, 

               2*x1   - x2 + 2*x3 <= 4]

               5*x1 + 5*x2 + 3*x3, 

              NonNegative]:

Définition 2   Tableau initial:
bi=si+
n
j=1
aijxj, pour i=1,…,m
z=
n
j=1
cjxj

Ou sous forme matricielle:

B=S+AX
z=CX
X0
Exemple 1   Tableau initial du problème précédent:
3 = s1         + x1 + 3 x2   + x3

2 =   s2       - x1        + 3 x3

2 =     s3   + 2 x1 + 3 x2   - x3

4 =       s4 + 2 x1   - x2 + 2 x3

---------------------------------

z = 0        + 5 x1 + 5 x2 + 3 x3

Exemple 9   On peut l’abréger sous forme matricielle:
read("tableaux.mu"):

linopt::Transparent(Chvatal19);

+-                                                   -+

|"linopt","restr",slk[1],slk[2],slk[3],slk[4],x3,x1,x2|

|                                                     |

|  "obj",    0,      0,     0,     0,     0,   3, 5, 5|

|                                                     |

| slk[1],    3,      1,     0,     0,     0,   1, 1, 3|

|                                                     |

| slk[2],    2,      0,     1,     0,     0,   3,-1, 0|

|                                                     |

| slk[3],    2,      0,     0,     1,     0,  -1, 2, 3|

|                                                     |

| slk[4],    4,      0,     0,     0,     1,   2, 2,-1|

+-                                                   -+

Définition 3   De manière générale, un tableau est un ensemble d’équations de la forme:
4 = x1       + 3/2 x2  - 1/2 x3 + 1/2 s4 

2 =   s1     + 3/2 x2  + 3/2 x3 - 1/2 s4 

3 =     s2   + 3/2 x2  + 5/2 x3 + 1/2 s4 

2 =       s3   - 4 x2    + 3 x3     - s4 

---------------------------------------- 

z = 5        - 5/2 x2 + 11/2 x3 - 5/2 s4

x1,s1,s2,s3 sont les variables basiques; {x1,s1,s2,s3} est la base.

x2,x3,s4 sont les variables non basiques.

Remarque 10   Terminologie: on utilise dans ce cours les tableaux, plutôt que les dictionnaires utilisés par exemple dans [1]. La différence est minime: on fait juste passer les variables non basiques d’un côté ou de l’autre des équations. D’autre part, on utilise s1,s2,s3,s4 plutôt que x4,x5,x6,x7 comme noms pour les variables d’écarts.

Voici le dictionnaire correspondant au tableau précédent:

x1 = 1 - 3/2 x2  + 1/2 x3 - 1/2 x7 

x4 = 2 - 3/2 x2  - 3/2 x3 + 1/2 x7 

x5 = 3 - 3/2 x2  - 5/2 x3 - 1/2 x7 

x6 = 2   + 4 x2    - 3 x3     + x7 

--------------------------------- 

 z = 5 - 5/2 x2 + 11/2 x3 - 5/2 x7

Remarque 11   La caractéristique essentielle d’un tableau est que, connaissant les variables non-basiques, on peut immédiatement calculer les variables basiques et la fonction objective (d’où le terme de dictionnaire). Le calcul devient même immédiat si toutes les variables non-basiques sont nulles.

Les équations d’un tableau décrivent un sous-espace affine E de n+m.

Un point p de cet espace est caractérisé par ses coordonnées dans les variables non-basiques.

Exercice 12   Calculer directement le tableau correspondant aux variables non-basiques x1,s2,s3 du programme linéaire Chvatal13.
Exercice 13   Soit t1 et t2 deux tableaux correspondant au même programme linéaire.

Que peut-on dire des deux sous-espaces affine de n+m qu’ils définissent ?












Chaque choix de variables non-basiques correspond à une base affine de ce sous-espace.

Définition 14   Le point de coordonnées (0,…,0) dans les variables non-basiques est appellé solution basique du tableau.

Un tableau est faisable si la solution basique (0,…,0) est une solution faisable.

De manière équivalente, un tableau est faisable si les constantes dans les équations du haut sont toutes positives ou nulles.

Revenons à l’exemple [1, p. 19]:

read("tableaux.mu"):

t:=linopt::Transparent(Chvatal19);

t:=linopt::Transparent::userstep(t, slk[3], x3);

Exercice 15   [1, 2.1 p. 26]

Utilisez l’algorithme du simplexe pour résoudre les programmes linéaires suivants:

Chvatal26_21a :=

[[  x1  +x2+2*x3 <= 4,

  2*x1     +3*x3 <= 5,

  2*x1  +x2+3*x3 <= 7],

  3*x1+2*x2+4*x3,

 NonNegative]:

Chvatal26_21c :=

[[2*x1+3*x2 <= 3,

    x1+5*x2 <= 1,

  2*x1  +x2 <= 4,

  4*x1  +x2 <= 5],

  2*x1  +x2,

 NonNegative]:

Exercice 16   Essayez d’appliquer l’algorithme du simplexe aux programmes linéaires de l’exercice [1, p. 7] (cf. ci-dessus). Que se passe-t’il ?

1.3  Pièges et comment les éviter

1.3.1  Bilan des épisodes précédents

On a un algorithme qui marche sur quelques exemples.

Il faut vérifier trois points pour savoir s’il marche en général:

  1. Initialisation
  2. Itération
  3. Terminaison

1.3.2  Itération

Proposition 1   Étant donné un tableau faisable, on peut toujours effectuer l’une des opérations suivantes:
  1. Conclure que le système a une solution optimale unique, la calculer et la certifier;
  2. Conclure que le système a une infinité de solutions optimales, les calculer et les certifier;
  3. Conclure que le système est non borné, et le certifier en décrivant une demi-droite de solutions sur laquelle z prend des valeurs aussi grandes que voulu.
  4. Trouver une variable entrante, une variable sortante, et effectuer un pivot. Par construction, le tableau obtenu est équivalent au tableau précédent, et est encore faisable. De plus, z a augmenté au sens large (i.e. la constante z* dans la nouvelle expression de z est supérieure ou égale à l’ancienne).

Proof. Il suffit d’analyser le tableau faisable. Notons S1,…,Sm les variables basiques, X1,…,Xn les variables non-basiques, et C1,…,Cn,z* les coefficients tels que z=z*+∑CiXi.

Par exemple, dans le tableau final du problème6, on a X1=x2, X2=s1, X3=s2, S1=x1, S2=x3, S3=s3, C1=−3, C2=−1, C3=−1 et z*=13.

  1. Si Ci<0, pour tout i, alors la solution basique du tableau, de coordonnées X1*=⋯=Xn*=0 est l’unique solution optimale. Vérifiez le en prouvant qu’une toute solution faisable quelconque de coordonnées X1,…,Xn donnant la même valeur z=z* à la fonction objective est égale à la solution basique du tableau.
  2. Si Ci≤0 pour tout i, la solution basique du tableau est optimale, et l’ensemble des solutions optimales est décrit par les inéquations linéaires du système et l’annulation des variables non-basiques Xi pour lesquelles on a Ci<0. Les détails sont similaires au 1.
  3. Sinon, on peut prendre Xi, variable non-basique avec un coefficient Ci>0. Si les équations du tableau n’imposent pas de limite sur Xi, le système est non borné: la demi-droite décrite par (0,…,0,Xi,0,…,0) pour Xi≥0 est composée de solutions faisables qui donnent des valeurs aussi grandes que voulu à z.
  4. Autrement, une des variables basiques Sj tombe à zéro, et on peut faire un pivot entre la variable entrante Xi et la variable sortante Sj. Par construction, la nouvelle solution basique correspond à une solution faisable (0,…,0,Xi,0,…,0) pour un Xi≥0. En particulier le nouveau tableau est faisable, et comme Ci≥0, la constante z* a augmenté au sens large.


Exemple 2   [1, p. 29] Système où z n’augmente pas strictement lors du pivot:
Chvatal29 :=  [[              2*x3 <= 1, 

                - x1 + 3*x2 + 4*x3 <= 2, 

                2*x1 - 4*x2 + 6*x3 <= 3],

                2*x1   - x2 + 8*x3, 

                NonNegative]:

t0:= linopt::Transparent(Chvatal29);

t1:= linopt::Transparent::userstep(t0, slk[1], x3);

t2:= linopt::Transparent::userstep(t1, slk[3], x1);

t3:= linopt::Transparent::userstep(t2, slk[2], x2);

t4:= linopt::Transparent::userstep(t3, x3, slk[1]);

Remarque 1   Lorsque z n’augmente pas, on est forcément dans une situation de dégénérescence: le pivot change le tableau, mais pas la solution basique décrite par le tableau.

1.3.3  Terminaison

Problème 17   Peut-on garantir que l’algorithme va finir par s’arrêter ?












Théorème 1   Si l’algorithme du simplexe ne cycle pas, il termine en au plus C(n+m,m) itérations.

Proof. (Résumé)

Chaque itération correspond à un tableau faisable.

Un tableau faisable est entièrement caractérisé par le choix des variables basiques.

Il n’y a que C(n+m,m) choix possibles de variables basiques.


Remarque 2   L’algorithme ne peut cycler qu’en présence de dégénérescence.

Avec une stratégie incorrecte, l’algorithme du simplexe peut cycler éternellement:

Exemple 3   [1, p. 31] Système cyclant en 6 itérations avec la stratégie:
Chvatal31 := [[0.5*x1 - 5.5*x2 - 2.5*x3 +  9*x4 <= 0, 

               0.5*x1 - 1.5*x2 - 0.5*x3 +    x4 <= 0,

                   x1                           <= 1],

                10*x1  - 57*x2   - 9*x3 - 24*x4,

              NonNegative]:

t0 := linopt::Transparent(Chvatal31);

t1 := linopt::Transparent::userstep(t0, slk[1], x1);

t2 := linopt::Transparent::userstep(t1, slk[2], x2);

t3 := linopt::Transparent::userstep(t2, x1, x3);

t4 := linopt::Transparent::userstep(t3, x2, x4);

t5 := linopt::Transparent::userstep(t4, x3, slk[1]);

t6 := linopt::Transparent::userstep(t5, x4, slk[2]);

Comment garantir que l’algorithme ne cyclera pas ?

La méthode des perturbations

L’algorithme du simplexe ne peut cycler qu’en présence de dégénérescence.

Problème 18   Comment se débarasser des dégénérescences ?












Idée: supprimer les dégénérescences en perturbant légèrement le système!

Exemple 4   [1, p. 34,35]

On introduit des constantes ε1>>⋯>>εn.

Inconvénient: solution approchée, ou introduction de calcul symbolique

La méthode du plus petit index

Théorème 2   L’algorithme du simplexe termine si, lorsqu’il y a ambiguïté sur le choix de la variable entrante ou sortante, on choisit toujours la variable de plus petit index.

Cette méthode est simple et élégante.

Par contre, elle empêche toute stratégie pour faire converger l’algorithme plus vite.

Méthodes intermédiaires

Stratégie au choix, mais si z n’augmente pas pendant plus d’un certain nombre d’itérations, on bascule sur la stratégie du plus petit index jusqu’à ce que l’on soit sorti de la dégénérescence.

1.3.4  Initialisation

Pour le moment, l’algorithme du simplexe nécessite de partir d’un tableau faisable.

Problème 2   Dans le cas général, comment se ramener à un tableau faisable?

Le système pourrait même ne pas avoir de solution!

Exemple 5   [1, p. 39] Système P1:

Maximiser: x1x2+x3

Sous les contraintes:

2x1x2+2x3≤4

2x1−3x2+x3≤−5

x1+x2−2x3≤−1

x1,x2,x3≥0












Exemple 6   Introduction d’un système auxiliaire P0 pour déterminer si P est faisable:

Maximiser: x0

Sous les contraintes:

2x1x2+2x3x0≤4

2x1−3x2+x3x0≤−5

x1+x2−2x3x0≤−1

x0,x1,x2,x3≥0

Remarques:

Étudions ce nouveau système:

Chvatal40 := [[ -x1   + x2 - 2*x3 - x0 <= -1,

               2*x1 - 3*x2   + x3 - x0 <= -5, 

               2*x1   - x2 + 2*x3 - x0 <= 4]

              -x0, 

              NonNegative]:

t0:=linopt::Transparent(Chvatal40);

t1:=linopt::Transparent::userstep(t0, slk[2], x0);

t2:=linopt::Transparent::userstep(t1, slk[1], x2);

t3:=linopt::Transparent::userstep(t2, x0, x3);

Maintenant, nous savons que le système P est faisable.

En fait, en éliminant x0 on obtient même un tableau faisable pour P!

Algorithme du simplexe en deux phases pour résoudre un problème P sous forme standard:

Phase I:

  1. Si (0,…,0) est solution faisable de P, on passe directement à la phase II.
  2. Définir un problème auxiliaire P0.
  3. Le premier tableau pour P0 est infaisable.
  4. Le rendre faisable par un pivot approprié de x0.
  5. Appliquer le simplexe habituel:
    1. Si à une étape donnée, x0 peut sortir de la base, le faire en priorité:

      En effet, il y a une solution faisable avec x0=0, et on peut passer en phase II.

    2. Si à une étape donnée on atteint une solution optimale:
      1. Si x0 n’est pas basique:

        Il y a une solution faisable avec x0=0. On peut donc passer en phase II.

      2. Si x0 est basique et z0<0:

        P est infaisable, et on s’arrête.

      3. Sinon x0 est basique et z0=0:

        Situation impossible si on fait toujours sortir x0 en priorité de la base.

  6. Tirer de P0 un tableau faisable pour P;

Phase II:

  1. Appliquer le simplexe habituel à partir du tableau donné par P0.
Exercice 1   [1, ex 3.9a p. 44]

Maximiser 3x1+x2

Sous les contraintes:

x1x2≤−1

x1x2≤−3

2x1+x2≤4

x1,x2≥0

t0:=linopt::Transparent(Chvatal44_39a0)

t1:=linopt::Transparent::userstep(t0, slk[2], x0)

t2:=linopt::Transparent::userstep(t1, slk[1], x1)

t3:=linopt::Transparent::userstep(t2, x0, x2)

t0:=linopt::Transparent(Chvatal44_39a)

t1:=linopt::Transparent::userstep(t0, slk[1], x1)

t2:=linopt::Transparent::userstep(t1, slk[2], x2)

t3:=linopt::Transparent::userstep(t2, slk[3], slk[2])

1.3.5  Le théorème fondamental de la programmation linéaire

Théorème 3   Tout programme linéaire P sous forme standard a l’une des propriétés suivantes:
  1. Si P n’a pas de solutions optimales, alors P est infaisable ou non borné;
  2. Si P a une solutions faisable, alors P a une solution basique faisable;
  3. Si P a une solution optimale, alors P a une solution basique optimale.

1.4  Efficacité de l’algorithme du simplexe

Pour une discussion complète sur ce thème, nous renvoyons au livre de référence [1, 4. How fast is the simplex method], ainsi qu’à l’excellente Foire Aux Questions http://rutcor.rutgers.edu/ mnk/lp-faq.html pour les évolutions récentes.

Exercice 2   [1, 4.2 et 4.3, p. 53]

1.5  Le théorème de dualité

1.5.1  Motivation: estimer la valeur optimale de la fonction objective

Exemple 7   Maximiser: z=4x1+x2+5x3+3x4

Sous les contraintes:

x1x2x3+3x4≤1

5x1+x2+3x3+8x4≤55

x1+2x2+3x3−5x4≤3

x1,x2,x3,x4≥0

Problème 3   Borne inférieure sur la valeur optimale z*?

Borne supérieure sur la valeur optimale z*?












D’après la seconde contrainte:

z*≤4x1+x2+5x3+3x4
25
3
x1+
5
3
x2+5x3+
40
3
x4
275
3

En utilisant la somme de la deuxième et troisième contrainte:

z*≤4x1+3x2+6x3+3x4≤58
Problème 4   Comment faire cela de manière systématique ?












On recherche des combinaisons linéaires des contraintes:

Ce qui donne:

(y1+5y2y3)x1+(−y1+y2+2y3)x2+(−y1+3y2+3y3)x3+(3y1+8y2−5y3)x4
≤ y1+55y2+3y3

Quelles sont les contraintes pour obtenir une borne sur z* ?












Pour garder le sens des inégalités: y1,y2,y3≥0

Pour obtenir une majoration de z=4x1+x2+5x3+3x4:

y1+5y2y3≥4

y1+y2+2y3≥1

y1+3y2+3y3≥5

3y1+8y2−5y3≥3

Si y1,y2,y3 satisfont ces conditions, on obtient la borne zy1+55y2+3y3.

On veut donc minimiser y1+55y2+3y3!

Par exemple, en prenant y1=0 et y2=y3=1, on retrouve l’inégalité z≤58.

1.5.2  Le problème dual

Définition 4   Soit P un programme linéaire sous forme standard:

Maximiser:

z=
n
j=1
cj xj

Sous les contraintes:

n
j=1
aij xj≤ bi, pour i=1,…,m
xj≥0, pour j=1,…,n

Le dual de P est le problème:

Minimiser:

w=
m
i=1
bi yi

Sous les contraintes:

m
i=1
aij yi≥ cj, pour j=1,…,n
yi≥0, pour i=1,…,m

P est appelé problème primal.

Proposition 2   Si x1,…,xn est une solution faisable du problème primal et y1,…,ym une solution faisable du problème dual, alors zw, i.e.
n
j=1
cj xj
m
i=1
bi yi

Proof. Il suffit d’appliquer les inégalités qui définissent les solutions faisables:

z=
n
j=1
cj xj
n
j=1



m
i=1
aij yi


xj=
m
i=1



n
j=1
aij xj


yi
m
i=1
bi yi=w


En particulier:

Exercice 3   Prouver que les solutions faisables x1=0 , x2=14, x3=0, x4=5 et y1=11, y2=0, y3=6 du problème original et de son dual sont optimales.

La donnée de (y1,y2,y3) donne un certificat de l’optimalité de la solution (x1,x2,x3,x4):

Quelqu’un qui veut faire une vérification peut le faire quasiment sans calcul:

il suffit de tester que les solutions sont faisables et que que z=w.

Problème 5   Est-il toujours possible de trouver un tel certificat ?












La réponse est oui, et c’est le théorème central de la programmation linéaire.

1.5.3  Le théorème de dualité

Théorème 4   Si le problème primal a une solution optimale (x1*,…,xn*), alors le problème dual a une solution optimale (y1*,…,ym*) telle que w*=z*, i.e.
n
j=1
cj xj*=
m
i=1
bi yi*.

Ce théorème nous assure de l’existence d’un certificat.

Mais y-a-t’il une technique pour le calculer ?

Oui, car la preuve va être constructive: son principe va précisément être de construire une solution optimale, en utilisant le tableau final obtenu par l’algorithme du simplexe.

Exemple 8   Faisons un peu de magie sur notre exemple.

Le tableau initial est:

Chvatal54 :=

[[  x1   - x2   - x3 + 3*x4 <= 1,

  5*x1   + x2 + 3*x3 + 8*x4 <= 55,

   -x1  +2*x2 + 3*x3 - 5*x4 <= 3 ],

  4*x1   + x2 + 5*x3 + 3*x4,

 NonNegative]:

t0:=linopt::Transparent(Chvatal54)

L’algorithme du simplexe donne comme tableau final:

t1:=linopt::Transparent::userstep(t0, slk[1], x4);

t2:=linopt::Transparent::userstep(t1, slk[3], x2)

Ce calcul donne la solution optimale (x1*:=0, x2*:=14, x3*:=0).

Ce calcul donne aussi un certificat, mais pour le vérifier, il faut refaire tout le calcul!

Sortons le lapin du chapeau …

La variable y1 est associée à la première contrainte, qui elle même est associée à la variable d’écart s1. Hop, on prends pour y1* l’opposé du coefficient de s1 dans l’expression de z dans le tableau final. De même pour y2* et y3*:

y1*:=11, y2*:=0, y3*:=6.

(y1*,y2*,y3*) est une solution faisable du problème dual.

Par «miracle», on obtient w*=z*.

On a donc pu lire le certificat voulu directement sur le tableau final!

Voyons maintenant pourquoi cela marche dans le cas général.

Proof. Il suffit de construire une solution faisable (y1*,…,ym*) vérifiant w*=z*.

On applique l’algorithme du simplexe au problème initial, en introduisant comme d’habitude les variables d’écart s1,…,sm. Dans le tableau final, z est de la forme

z=z*+
n
j=1
cj
xj+
m
i=1
di si,

où les cj et di sont des coeffs nuls pour les variables basiques, et négatifs pour les autres.

On pose comme dans l’exemple:

yi*:=−di, pour i=1,…,m.

Il ne reste plus qu’à vérifier que (y1*,…,ym*) est faisable et donne w*=z*.

C’est un calcul fastidieux mais direct (surtout sous forme matricielle!) …

Pour une solution quelconque (x1,…,xn), on a par définition:

z=
n
j=1
cj xj
si=bi
n
j=1
aij xj

En remplaçant dans l’expression ci-dessus, on obtient

n
j=1
cj xj=z*+
n
j=1
cj
xj
m
i=1
yi*(bi
n
j=1
aijxj)
n
j=1
cj xj=z*
m
i=1
bi yi*+
n
j=1
(
cj
+
m
i=1
aij yi*) xj

Cette égalité étant vérifiée quel que soit le choix de (x1,…,xn), il doit y avoir égalité des coefficients des xj de part et d’autre. On en déduit d’une part que

z*=
n
j=1
bi yi*=w*,

comme voulu, et d’autre part que

m
i=1
aij yi*=cj
cj
≥ cj,

c’est-à-dire que (y1*,…,ym*) est une solution faisable du problème dual.


1.5.4  Relations entre un problème et son dual

Proposition 3   Le dual du dual d’un problème P est le problème P lui-même.
Exercice 4   Vérifiez-le sur un exemple.

Il s’ensuit:

Théorème 5   On a les relations suivantes entre un problème P et son dual Q:

P admet une solution optimale si et seulement si Q en admet une.

Si P est faisable, alors Q est borné; si Q est faisable, alors P est borné.

Remarque 3   Un problème et son dual peuvent être simultanément infaisables!

Maximiser: 2x1x2

Sous les contraintes:

x1x2≤1

x1+x2≤−2

x1,x2≥0

Le tableau suivant résume les possibilités (nb: un problème non borné est faisable!)

primal\dualoptimalinfaisablenon borné
optimalpossibleimpossibleimpossible
infaisableimpossiblepossiblepossible
non bornéimpossiblepossibleimpossible

1.5.5  Notations matricielles

Exercice 19   TODO!Introduire les notations matricielles. Vérifier que prendre le dual revient à transposer et à multiplier par −1. En déduire que le dual du dual de P est P. Redémontrer la proposition et le théorème en utilisant les notations matricielles.

1.5.6  Conditions de complémentarité des variables d’écart

Problème 6   Supposons que l’on connaisse la solution optimale (x1*,…,xn*) du problème, mais pas le tableau final dans l’algorithme du simplexe. Peut-on retrouver la solution optimale (y1*,…,ym*) du problème dual de façon à obtenir un certificat ?

Pour voir cela, on va raffiner l’inégalité wz sur des solutions xj et yi faisables en utilisant les variables d’écart pour mesurer la différence wz.

Exercice 20   On veut introduire des variables d’écart ti pour le problème dual:

Donner une formule raisonable pour ti.

Exprimer wz en fonction des xi, yi, si, ti.












Par définition des variables d’écart si, on a

si=bi
n
j=1
aijxj,

et donc

bi=si+
n
j=1
aijxj.

De même, par définition des variables d’écart tj pour le problème dual, on a

tj=
m
i=1
aijyicj,

que l’on utilise pour exprimer cj

cj=
m
i=1
aijyitj.

En remplaçant dans l’expression de wz, on obtient

wz=
m
i=1
biyi
n
j=1
cjxj=
m
i=1
siyi+
m
i=1



n
j=1
aijxj


yi
n
j=1



m
i=1
aijyi


xj+
n
j=1
tjxj

Qui se simplifie en:

wz=
m
i=1
siyi+
n
j=1
tjxj.
Problème 7   Que peut-on déduire de cette égalité ?












Théorème 6   (Complémentarité des variables d’écart) Si (x1*,…,xn*) est solution optimale du problème primal et (y1*,…,ym*) est solution optimale du problème dual, alors:
yi*=0 ou si*=0, pour tout i=1,…,m;
xj*=0 ou tj*=0, pour tout j=1,…,n.
Problème 8   Et maintenant ? Comment utiliser ce théorème pour trouver (y1*,…,ym*)?
Exercice 5   [1, p. 64-65]
Théorème 7   Si (x1*,…,xn*) est une solution basique non dégénérée, alors les équations que l’on tire du théorème de complémentarité ont une unique solution.

Donc, lorsque la solution optimale du problème est non dégénérée, la technique que l’on a utilisée dans les exercices permet toujours d’obtenir un certificat, pour le prix de la résolution d’un système de m équations linéaires en m variables.

1.5.7  Interprétation géométrique de la dualité

Exercice 6   Maximiser x1+x2

Sous les contraintes

2x1+x2≤14

x1+x2≤8

2x1x2≤10

x1,x2≥0.

Faire une figure dans le plan de la région des solutions faisables.

Donner le problème dual.

Prendre y1=y2=1,y3=0. Donner l’inégalité sur les xi correspondante, et représenter la région qu’elle délimite dans le plan.

Donner quelques solutions faisables du problème dual.

Tracer sur la figure les régions délimitées par les inégalités correspondantes.

Calculer la solution optimale du primal et du dual.

Les tracer sur la figure.

Essayer d’interpréter géométriquement les théorèmes que l’on a rencontrés.

1.5.8  Interprétation économique des variables duales

Problème 21   Modèle économique d’une usine dont on veut maximiser le profit.

Une papetterie produit et vend différents types de papier: du papier kraft vendu au rouleau, du papier recyclé vendu à la ramette et du papier velin vendu à la feuille. Pour celà, elle dispose en début de mois d’un certain stock de matière première: de l’eau (à l’hectolitre), du chlore (au litre) du bois (à la tonne), du vieux papier (au kilo), des fibres textiles (au ballot). Remplacer les stocks en fin de mois à un certain coût. Chaque type de papier nécessite une certaine proportion de chaque matière première. Par exemple, le chlore sert à blanchir le papier; il n’y en a pas besoin pour le papier kraft; le papier velin est essentiellement produit à partir de bois et de fibres textiles, etc. Le but est de prévoir, pour le mois qui vient, quelle quantité de chaque papier il faut produire pour maximiser le profit de la papetterie.

Modéliser ce problème sous forme de programme linéaire sous forme standard.












xj : quantité de produit j fabriquée

cj : prix de vente unitaire du produit j

aij: quantité de ressource i consommée par unité de produit j fabriquée

bi: limites sur la disponibilité de la ressource i

Maximiser:

z=
n
j=1
cjxj

Sous les contraintes:

n
j=1
aijxj≤ bi, pour i=1,…,m;
xj≥0, pour j=1,…,n.

Quelle dimension (au sens physique) ont les variables xj , bi , cj , aij?

On voudrait trouver une interprétation pour les variables yi dans le problème dual. Quelle dimension physique ont-elles ? Qu’est-ce que cela suggère ?












Cela suggère que yi mesure la valeur intrinsèque de la ressource i pour l’usine.

Théorème 8   S’il y a au moins une solution optimale (x1*,…,xm*) non dégénérée, alors il existe ε strictement positif tel que lorsque |ti|≤ε pour tout i, le programme linéaire relaxé:

Maximiser:

z=
n
j=1
cjxj

Sous les contraintes:

n
j=1
aijxj≤ bi+ti, pour i=1,…,m;
xj≥0, pour j=1,…,n.

a une solution optimale, et la valeur optimale est

z*+
m
i=1
yi*ti

z* est la valeur optimale du problème original et (y1*,…,ym*) est la solution optimale du dual.

Autrement dit, on peut mesurer l’espérance de gain au voisinage d’une solution optimale lorsque l’on relaxe certaines des contraintes: yi* décrit le gain que l’usine peut espérer en augmentant la quantité de ressource i disponible.

1.5.9  Problèmes

Problème 22   Utiliser le théorème de dualité pour vérifier les solutions des problèmes de programmation linéaire que vous avez résolu jusqu’ici.
Problème 23   Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kF par hectares, et rapporte 50 kF. Alternativement, couper un hectare de bois, et replanter avec des pins coûte 50 kF par hectares, et rapporte à terme 120 kF. Sachant que le bûcheron n’a que 4000 kF en caisse au début de l’opération, déterminer la meilleure stratégie à adopter et le profit escomptable.

Maintenant, le bûcheron a aussi l’option d’emprunter pour augmenter son capital initial, et ce pour un taux d’intérêt total de S% sur la durée de l’opération. Alternativement, il peut décider d’investir son capital dans une autre activité rapportant T% sur la durée de l’opération. Déterminer, selon les valeurs de S et T, la meilleure stratégie à adopter.

Problème 24   Pouvez vous interpréter les conditions de complémentarité des variables d’écart en termes économiques ?
Problème 25   L’objectif est de démontrer l’un des sens du théorème d’interprétation économique des variables duales. L’autre sens est plus technique, et ne sera pas abordé ici; voir les références pour les détails.

Soit z* la valeur optimale du problème primal et (y1*,…,ym*) une solution optimale quelconque du problème dual. Montrer que pour toute solution faisable (x1,…,xn) du problème primal où l’on a relaxé chaque contrainte i de la quantité ti, on a

n
j=1
cjxj≤ z*+
m
i=1
yi*ti












Proof. Exprimons le fait que (x1,…,xn) est solution faisable du problème avec les contraintes relaxées:

n
j=1
aijxj≤ bi+ti

Donc:

m
i=1
yi*


n
j=1
aijxj


m
i=1
yi*bi+
m
i=1
yi*ti=w*+
m
i=1
yi*ti=z*+
m
i=1
yi*ti

On a trouvé le terme de droite voulu.

Reste à trouver le terme de gauche, ce que l’on fait avec une inversion de somme similaire à celle qui a été utilisée dans les démonstrations précédentes.

m
i=1
yi*


n
j=1
aijxj


=
n
j=1



m
i=1
aijyi*


xj
n
j=1
cjxj


Problème 9   Construire un exemple montrant que la conclusion du théorème est fausse si l’hypothèse de non dégénérescence de la solution optimale est omise.

1.6  Applications

1.6.1  Jeux matriciels

Le jeu de Morra

Règles du jeu (pour deux personnes, Louis et Claire).

À chaque tour, chaque joueur cache un ou deux pions, et essaye de parier, à voix haute, combien de pions l’autre joueur a caché. Si un seul des joueurs a parié la bonne solution, son score augmente d’autant de point qu’il y a de pions cachés en tout; le score de l’autre joueur diminue du même nombre de points. Sinon, rien ne ce passe. Par exemple, si Claire cache 2 pions et parie 1 tandis que Louis cache 2 pions et parie 2, Louis gagne 4 points et Claire en perds 4.

Le but est de trouver une stratégie gagnante.

Exercice 26   Jouez!












À chaque étape, chaque joueur a le choix entre 4 actions:

Chacune de ces options est appelée stratégie pure.

Problème 10   Est-ce que suivre une stratégie pure est une stratégie raisonnable ?












Quelles autres stratégies ?












Exercice 27   Claire et Louis font un long match.

Stratégie de Claire: inconnue; elle a joué c1 fois [1,1], c2 fois [1,2], c3 fois [2,1] et c4 fois [2,2].

Stratégie de Louis: lancer une pièce à chaque tour pour choisir entre [1,2] et [2,1].

Calculer les gains et pertes de Claire et Louis.












Résultat:

Gain de Louis: (c1c4)/2.

Perte moyenne maximale à chaque tour: 1/2.

Une stratégie aléatoire de ce type est appellée stratégie mixte.

Exercice 28   Généralisation: on suppose que Louis se fixe une stratégie mixte. Caractérisez la meilleure stratégie de contre-attaque de Claire, c’est-à-dire celle qui minimise le gain moyen de Louis.
Problème 29   Comment caractériser la meilleure stratégie mixte pour Louis ?












Jeux matriciels

Chaque matrice A=(aij) définit un jeu. À chaque tour, le joueur par Ligne (Louis) choisit une ligne i parmi les m lignes, et le joueur par Colonnes (Claire) choisit une colonne j parmi les n colonnes.

Le gain pour Louis est le coefficient aij:

Exercice 7   Écrire la matrice pour le jeu de Morra.

Écrire la matrice pour le jeu papier/ciseaux/caillou/puits.

Exercice 30   Dans un long match, Louis adopte une stratégie mixte, en choisissant au hasard la stratégie pure i avec une probabilité fixée xi. Claire joue selon une stratégie de son choix: à la fin du match, elle a joué cj fois la stratégie pure j.

On note N:=∑ici et yi:=ci/N. Calculer le gain moyen par tour pour Louis.












Définition 5   Les vecteurs x:=(x1,…,xm) et y:=(y1,…,yn) sont dit stochastiques:
xi≥0 et x1+⋯+xm=1.

On considère x:=[x1,…,xm] comme un vecteur ligne, et y:=[y1,…,yn]T comme un vecteur colonne, de façon à pouvoir écrire commodément le gain de Louis sous la forme:

xAy.
Exercice 31   Louis adopte une stratégie mixte donnée. Caractériser le gain au pire pour Louis.












Ici, x est constant. Cela peut se mettre sous la forme du programme linéaire en y:

 
min
y
xAy

Si Louis veut une bonne garantie pour maintenir ces gains hauts (ou ses pertes faibles), il peut chercher une stratégie mixte qui maximise la quantité miny xAy.

On appelle une telle stratégie mixte optimale; son gain moyen vaut

 
max
x
 
min
y
xAy
Problème 32   Est-ce que la stratégie mixte optimale est la meilleure stratégie ?












Comment calculer la stratégie optimale ?












Tel quel, le problème ne se met pas sous la forme d’un programme linéaire. On avait vu une astuce pour se débarasser d’un min dans les contraintes; celle ci ne s’applique cependant que lorsque l’on prend le min d’un nombre fini d’expressions, alors qu’ici il y en a a priori autant que de choix de y.

Proposition 4   On peut toujours atteindre la quantité miny xAy avec un y de la forme:
(0,…,0,1,0,…,0).

Autrement dit:

 
min
y
xAy=
 
min
j
m
i=1
aijxi.

Interprétation ?

Proof. Clairement, pour une stratégie pure j donnée:

 
min
y
xAy
m
i=1
aijxi.

Maintenant, supposons que j0 minimise ∑i=1maij0xi:

m
i=1
aijxi
m
i=1
aij0xi pour j=1,…,n.

Alors, si y:=(y1,…,yn) est un vecteur stochastique, on a:

xAy=
n
j=1
m
i=1
xiaijyj=
n
j=1
yj


m
i=1
aijxi


n
j=1
yj


m
i=1
aij0xi


=


n
j=1
yj





m
i=1
aij0xi


.

Donc, comme voulu,

xAy
m
i=1
aij0xi


Exercice 33   Formuler le problème de trouver une stratégie mixte optimale pour Louis comme un programme linéaire.

Supposons que Claire veuille aussi adopter une stratégie mixte optimale. Formuler de même son problème sous forme de programme linéaire.












Théorème 9   (Théorème minimax). Pour toute matrice m× n A, il existe un vecteur stochastique x* de longueur m, et un vecteur stochastique y* de longueur n tel que:
 
min
y
x*Ay=
 
max
x
xAy*,
où le minimum est pris sur tout les vecteurs stochastiques y de longueur n, et le maximum est pris sur tout les vecteurs stochastiques x de longueur m.

Interprétation ?

Proof. Application immédiate du théorème de dualité.


Définition 6   Si A est interprétée comme un jeu, la valeur du jeu est la quantité:
 
min
y
x*Ay=
 
max
x
xAy*.
Exercice 8   Calculer la valeur du jeu de Morra et du jeu caillou/pierre/ciseaux/puit.












D’où vient cette particularité ?

Stratégie cachée / stratégie révélée

Problème 34   Est-ce que révéler sa stratégie à son adversaire, diminue l’espérance de gain?












Morra modifié

Il n’est pas très pratique de devoir annoncer simultanément les paris.

Problème 35   Est-ce que le jeu est modifié si Claire annonce toujours son pari en premier ?
Exercice 9   Faire l’analyse de ce nouveau jeu.

Bluff et antibluff

Jeu de poker avec trois cartes (jeu inventé et analysé par Kuhn en 1950).

A et B déposent chacun un pion, puis reçoivent chacun une carte.

Ensuite, A peut parier un pion supplémentaire ou passer.

De même pour B, puis pour A, jusqu’à ce que:

Exercice 10   Jouez!

Étant donné une distribution des cartes, décrire les stratégies pures pour A et B.

Décrire toutes les stratégies pures pour A et B.

Quelle est la taille de la matrice des gains ?












Y-a-t’il des stratégies que l’on peut éliminer d’office ?

Au final, on peut obtenir comme matrice de gain:

 124124314324
11200−1/6−1/6
11301/61/3−1/6
122−1/6−1/61/61/6
123−1/6001/6
3121/6−1/30−1/2
3131/6−1/6−1/6−1/2
3220−1/21/3−1/6
3230−1/31/6−1/6

Stratégie mixte pour A: [1/3,0,0,1/2,1/6,0,0,0]; stratégie mixte pour B: [2/3,0,0,1/3]T.

Exercice 11   Prouver que ces stratégies sont optimales.
Exercice 12   Lorsque A a la carte 1 en main, calculer en quelles proportions il doit choisir entre les 4 stratégies élémentaires.

Résumé de la stratégie de A:

Pour A, bluffer ou contre-bluffer est rentable.

Résumé de la stratégie de B:

Pour B, bluffer est rentable, mais pas contre-bluffer.

1.7  Réseaux de transport

Objectif: étudier une certaine classe de problèmes de programmation linéaire sur laquelle l’algorithme du simplexe prends une forme simple et efficace.

1.7.1  Un exemple d’application

Exemple 9   Considérons le problème de transport d’électricité suivant.

Les noeuds sont des villes.

Les arcs sont des câbles électriques, à sens unique, reliant les villes.

Sources (noeuds avec production): 6: 9 MW; 7: 5 MW

Puits (noeuds avec consommation): 3: 6 MW; 4: 6 MW; 5: 2 MW

Noeuds intermédiaires (noeuds sans production ni consommation): 1,2

Il y a des pertes en lignes, donc transporter du courant a un coût. On le modélise par un coût par unité de courant transportée sur chaque arc entre la ville i et la ville j.

Répartition du flux de courant pour satisfaire la consommation au plus bas coût?

Exercice 13   Mettre le problème précédent sous forme de problème de programmation linéaire. Qu’a-t’il de spécifique ?












Remarque 4   Cette modélisation est a priori ambigue: dans le réseau suivant, x12=1, x23=1 et x24=1 peut représenter deux situations différentes:



Comme le consommateur ne se soucie pas de l’origine du courant (un watt, c’est un watt), et comme le coût dans les deux situations est le même, on peut ignorer cette ambiguïté, et considérer que ces deux situations sont équivalentes.

1.7.2  Problème standard de transport

Définition 7   Un problème comme le précédent est appelé problème standard de transport.

On impose les restrictions suivantes:

Ces restrictions permettent d’obtenir un algorithme plus simple et élégant. Nous verrons plus tard comment les contourner pour traiter des problèmes plus généraux.

Une solution d’un problème de transport peut être modélisé en introduisant pour chaque arc allant du noeud i au noeud j une variable xij qui mesure le flux le long de cet arc.

Proposition 5   Une solution décrite par les valeurs des xij est réalisable (faisable) si et seulement si:

Le seulement si est clair; le si demanderait une vérification pour décider les détails de la réalisation: quel watt venant d’où se retrouve où au final.

Les solutions faisables sont donc décrites par un système d’équations de la forme:

x14+x24x45=6.

(ici, il s’agit du sommet 4 dans notre exemple), et d’inégalités du type x14≥0.

Exercice 14   Donner une solution faisable pour notre exemple.
Remarque 5   Pour des raisons de conventions, on note n le nombre de noeuds du réseau, et m le nombre d’arcs. C’est l’inverse de ce que l’on avait utilisé pour les problèmes de programmation linéaire généraux …
Définition 8   La matrice d’incidence du réseau est une matrice A de taille n× m. Les lignes sont indexées par les noeuds du réseau, et les colonnes par les arcs. Dans la cellule correspondant à un noeud k et un arc ij, on mets un coefficient valant:

Avec cette notation, et en notant b le vecteur colonne des bi, x le vecteur colonne des xij, et c le vecteur ligne des cij on peut mettre le problème sous forme matricielle:

Minimiser: cx

Sous les contraintes: Ax=b et x≥0.

Exercice 15   Écrire sous forme matricielle le problème correspondant à notre réseau:












x:=

















x13
x14
x15
x21
x23
x24
x25
x45
x61
x62
x63
x67
x72
x75


















, b:=







0
0
6
6
2
−9
−5








A:=







−1−1−11    1     
   −1−1−1−1  1  1 
1   1     1   
 1   1 −1      
  1   11     1
        −1−1−1−1  
           1−1−1








c:=
c13c14c15c21c23c24c25c54c61c62c63c67c72c75

c:=
4828107653875648108243319

On peut vérifier que dans l´égalité Ax=b, la quatrième composante donne l’équation

x14+x24x45=6,

correspondant au sommet 4.

1.7.3  Solutions faisables arborescentes

Définition 9   Quelques classes de graphes classiques:
CheminCycle
Graphe non connexeGraphe connexe
Forêt (graphe acyclique)Arbre

Arbre couvrant du réseau:



Exercice 16   Supposez que seuls les arcs dans l’arbre couvrant précédent peuvent être utilisés.

Y-a-t’il une solution ? Est-elle faisable ?












Proposition 6   Étant donné un arbre couvrant T, il y a une unique solution de transport pour satisfaire les contraintes de production et consommation en n’utilisant que les arcs de l’arbre couvrant.

Formellement, il existe un unique vecteur x:=[xij] vérifiant:

Ax=b et xij=0 pour ij n′appartenant pas à T.
Définition 10   On appelle une telle solution arborescente.

Si de plus le vecteur x vérifie x≥0, c’est une solution arborescente faisable.

On dit aussi que l’arbre est faisable.

1.7.4  Algorithme du simplexe pour les réseaux, une motivation économique

Exemple 10   Description de l’algorithme sur le réseau précédent.

1.7.5  Démonstration algébrique de l’optimalité

Soit T un arbre.

On note x:=[xij] la solution correspondante.

Objectif: comparer le coût cx pour la solution x avec le coût cxpour une autre solution faisable x.

Soit y:=[y1,…,yn] les prix à chaque noeuds pour la solution x.

Lors de l’application du simplexe, on a comparé le coût du transport cij d’une unité le long de l’arc ij par rapport à la différence de prix yjyi entre les noeuds i et j.

On pose cij:=cij−(yjyi), et c=[cij] le vecteur ligne correspondant.

Exercice 17   Montrer que c=cyA.












Lemme 1   On a cx=cx+cx.

Proof. On va utiliser le résultat de l’exercice pour reformuler le coût de x en fonction de c:

c
x
=(
c
+yA)
x
=
c
x
+yA
x
=
c
x
+yb.

En particulier, cx=cx+yb.

Comme en plus cij=0 si ijT et xij=0 si ijT, cx=0, on a cx=yb.

Conclusion: cx=cx+cx.


Théorème 10   Si cij≥0 pour tout arc ij, alors la solution x est optimale.

Exercice: finissez de le démontrer!












Proof. Si x est une autre solution faisable, xij≥0. Donc cx=∑cijxij≥0.


1.7.6  Initialisation

Comment choisir un arbre de départ faisable ?

On va, comme pour le simplexe habituel, introduire un problème auxiliaire:

  1. Choisir un arbre couvrant T.
  2. Calculer la solution x correspondante.
  3. Si pour un arc ij de T on a xij<0, la solution est infaisable. Ca n’est pas un problème:
    S’il n’existe pas, on ajoute un arc artificiel ji dans le réseau.
    On met ji à la place de ij dans T.
  4. L’arbre obtenu est faisable dans le réseau modifié.

Problème: existe-t’il un arbre faisable dans le réseau modifié n’utilisant pas d’arc artificiel?

On prend comme fonction de coût w:=∑ij artificiel xij.

De la sorte, si x est une solution faisable du problème original, alors w=0.

On applique le simplexe. À la fin, on est dans l’une des situations suivantes:

  1. w*>0: Le problème original est infaisable.
  2. w*=0, et l’arbre final T1 n’utilise aucun arc artificiel:
    T1 est une solution faisable du problème initial, comme voulu.
  3. w*=0, et l’arbre final T1 utilise au moins un arc artificiel:
    On a clairement xij*=0 pour tous les arcs artificiels.
    Comme le réseau est connexe, on peut toujours échanger les arcs artificiels par d’autres arcs non artificiels, sans changer les xij*.

1.7.7  Terminaison et cyclage

Comme dans le cas général, l’algorithme du simplexe pour les réseaux a les propriétés suivantes:

Pour les détails, nous renvoyons à [1, Ch. 19].

1.7.8  Comment contourner les restrictions ?

Dans les exercices suivants, on cherche à contourner les restrictions sur les problèmes standards de transport.

Exercice 18   Dans les problèmes suivants, on veut répartir au mieux le transport d’oranges via des réseaux ferroviaires, avec les productions et consommations indiquées sur les noeuds, et les coûts de transports indiqués sur les arcs. Pour chacun d’entre eux, indiquer si on peut le modéliser sous forme de problème standard de transport, et si oui, comment.

1.8  Applications du simplexe des problèmes de transports

Problème 36   Une usine de barrettes mémoire pour ordinateur doit faire face à une demande fluctuante dans le temps. On suppose que pour l’année à venir, la demande dj pour chaque mois j est connue à l’avance (cette hypothèse vaut ce qu’elle vaut).

Pour adapter la production à la demande, l’usine a le choix entre plusieurs options:

À la fin de l’année, on veut de plus qu’il n’y ait plus aucun stock, afin de faciliter l’inventaire.

Évidemment, l’objectif est d’adapter la production au moindre coût.

Modéliser ce problème sous forme de problème de transport standard.

1.8.1  Un problème d’assignement

Exercice 19   Répartition de cours entre plusieurs professeurs.

Dans le département de mathématiques d’une université aux USA, l’évaluation des enseignants par les étudiants a donné au cours des derniers semestres les résultats suivants:

Cours\ProfesseurBillYuLuisJohnHugh
Calculus 1342,32,92,8
Differential Equations2,253,23,71,94,4
Statistics2,63,74,52.73,1
Calculus 23,94,12,63,92,4
Discrete maths2,82,83,53,44,2

Dans un semestre, chaque cours est enseigné par un professeur, et chaque professeur enseigne un cours. Le chef du département veut répartir les cours du prochain semestre entre les professeurs de façon à exploiter au mieux leurs talents respectifs (ou minimiser la grogne des étudiants, au choix…). Il décide de prendre comme mesure de la qualité d’une répartition la moyenne sur chaque cours de la note du professeur qui l’enseigne.

Modéliser le problème, et indiquer comment on pourrait le résoudre.












Problème 11   Est-on sûr d’obtenir une solution entière ?












Théorème 11   (dit d’intégralité) Soit P un problème standard de transport où les contraintes sont entières (i.e. les bi sont entiers). Alors:
  1. Si P a une solution, alors il a une solution à coefficients entiers;
  2. Si P a une solution optimale, alors il a une solution optimale à coefficients entiers.

Proof. Une solution arborescente pour P a toujours des coefficients entiers!

En effet, la matrice d’incidence de l’arbre a des coefficients 1, −1 et 0, et on peut la mettre sous forme triangulaire avec des coefficients 1 et−1 sur la diagonnale. Du coup, lorsque l’on calcule le flux le long des arcs de l’arbre (ce qui revient à inverser la matrice), on obtient uniquement des flux entiers.


Le théorème d’intégralité est assez simple. Alors quel est son intérêt ?

Le problème précédent est appellé problème d’assignement, et est essentiellement combinatoire (les variables sont discrètes).

Ce que dit fondamentalement le théorème d’intégralité, c’est que dans certains cas les méthodes de programmation linéaire peuvent être utilisées pour résoudre des problèmes purement combinatoire, ce qui est loin d’être trivial!

C’est le sujet de la combinatoire polyhédrale.

1.8.2  Quelques commentaires sur la programmation linéaire en coefficients entiers

Les problèmes de programmation linéaire en entiers (on impose que les solutions soit à coordonnées entières) sont notoirement difficile. Ils sont la plupart du temps NP-complets, et nécessitent la plupart du temps l’utilisation d’algorithme de backtrack (essai-erreur) qui ne sont pas polynomiaux.

Par contre, si par chance on peut les mettre sous forme de problèmes standards de transport, le théorème d’intégralité permet de les résoudre par l’algorithme du simplexe.

Exemple 11   Un problème de sac-à-dos:

On a des objets de différentes tailles l1,…,ln et différentes valeurs v1,…,vnque l’on veut mettre dans un sac-à-dos de taille l. Évidemment le sac est trop petit, et l’on doit donc faire un choix. Le but est de remplir au maximum le sac-à-dos. Cela peut se mettre sous la forme:

Maximiser v=∑i=1nxivi, sous les contraintes 0≤ xi≤1, xi entier.

Peut-on le mettre sous forme de problème de transport ?












Exemple 12   Le problème d’assignement cours/professeurs.
Problème 12   Est-ce que ce ce problème est polynomial ?












On note que l’algorithme du simplexe n’est pas polynomial!

Par contre, il existe un autre algorithme, dit de l’ellipsoïde, pour résoudre les problème de programmation linéaire qui est polynomial. Il est amusant de constater qu’en pratique il est moins efficace que l’algorithme du simplexe. Nous renvoyons au Chvatal pour une description complète de cet algorithme.

Toujours est-il que cela peut permettre de montrer que le problème d’assignement est polynomial.

1.8.3  Combinatoire polyhédrale

Pour des détails sur ce domaine, nous recommandons particulièrement la lecture de l’article sur le sujet dans le handbook of combinatorics.

L’idée générale de la combinatoire polyhédrale est la suivante:

Le théorème de dualité donne alors des relations de type min-max entre des problèmes combinatoires.

Théorème de König (lemme des mariages)

Théorème 12   On a un ensemble de n filles et n garçons que l’on veut marier ensemble. Dans notre grande magnanimité, on veut bien faire attention à ne pas marier deux personnes qui ne se connaissent pas.

Si chaque fille connait exactement k≥1 garçons et chaque garçon connaît exactement k filles, alors on peut arranger n mariages de façon à ne pas marier des inconnus.

Exercice 20   Prouvez ce théorème en construisant le problème de transport qui va bien.












Proof. On associe à chaque fille i une source ri produisant une unité, et à chaque garçon un puit si consommant une unité, et on met un arc entre chaque couple ri si se connaissant.

Indépendamment du coût sur les arcs, le problème est faisable:

Il suffit de mettre un flux de 1/k sur chaque arc.

Le théorème d’intégralité indique alors qu’il y a une solution entière.

Cette solution entière donne une façon d’organiser les mariages.


Matrices doublement stochastiques

Définition 11   Une matrice X=[xij] de taille n× n est doublement stochastique si les coefficients xij sont positifs et si la somme des coefficients sur chaque ligne et chaque colonne vaut 1:



0,50,20,3
0,010,70,29
0,490,10,41



.

X est une matrice de permutation si sur chaque ligne et chaque colonne il y a exactement un 1 et n−1 zéros:




010
001
100



.

La matrice précédente correspond à la permutation 3,1,2.

Clairement une matrice de permutation est une matrice doublement stochastique.

Les matrices de permutations sont les matrices doublement stochastiques à coeffs entiers.

Exemple 13   Dimension 2: quelles sont les matrices doublement stochastiques ? quelles sont les matrices de permutations ?












Théorème 13   (Birkhoff-Von Neumann) Toute matrice doublement stochastique est une combinaison linéaire convexe de matrices de permutations.
Exercice 37   Écrire la matrice doublement stochastique ci-dessus comme combinaison linéaire convexe de matrices de permutations.












Lemme 2   Pour toute matrice X doublement stochastique, on peut trouver une matrice de permutation Y de façon à ce que si xij=0 alors yij=0.
Exercice 38   Démontrer ce lemme en utilisant un réseau de transport adéquat, et déduisez-en le théorème.

Couvertures et couplages dans les graphes bipartis

On va maintenant regarder une application de la programmation linéaire pour étudier des graphes non orientés comme le suivant:



Une couverture C de ce graphe est un ensemble de sommets qui touchent toutes les arêtes, comme par exemple C:={1,3,4,7,8}:



Exemple 39   On a 8 petits villages reliés par des routes. En cas d’accident de la route, on veut que les pompiers puissent intervenir rapidement. Le prefet impose que lorsqu’une route relie deux villages, il y ait une caserne de pompier dans au moins l’un des deux villages. Évidemment le budget est serré, donc on veut construire des casernes de pompier dans un nombre minimal de villages.

Modélisation: Chaque village est représenté par un sommet du graphe précédent, les arêtes représentant les routes. Résoudre notre problème revient à chercher une couverture de taille minimale du graphe.

Un couplage M de ce graphe est un ensemble d’arêtes qui ne se touchent pas, comme par exemple M:={{1,3},{4,5},{7,8}}:



Exemple 40   On veut loger un groupe de 8 personnes dans un hotel, avec des chambres simples et doubles. Pour minimiser les dépenses, on utiliser le maximum de chambres doubles. D’un autre côté on ne veut pas forcer deux personnes qui ne se connaissent pas bien à partager une chambre.

Modélisation: chaque sommet du graphe précédent représente une personne, et chaque arête relie deux personnes qui se connaissent bien. Résoudre notre problème revient alors à rechercher un couplage de taille maximale dans le graphe.

Exercice 41   Montrer que pour un couplage M et une couverture C d’un même graphe, on a toujours |M|≤|C|.












Proof. Comme C est une couverture, chaque arête de M devra être touchée par au moins un sommet dans C. De plus, M étant un couplage, chaque sommet de C touche au plus une arête de M. Donc, on a bien |M|≤|C|.


Problème 42   Peut-on trouver M et C de façon à avoir égalité ?












Dans notre exemple, non. Par contre, on va voir que pour certaines classes de graphe, cela va être vrai: on aura un théorème de dualité min-max. Comme par hasard, c’est une conséquence de la programmation linéaire.

On appelle graphe biparti un graphe dont on peut partitioner les sommets en deux paquets A et B de sorte que toutes les arêtes soient entre A et B:



Exercice 43   On veut rechercher un couplage maximal du graphe précédent. Montrer comment on peut résoudre ce problème en utilisant un réseau de transport.












On peut par exemple introduire le réseau suivant.



Chaque solution entière du réseau correspond à un couplage M du graphe biparti (les arêtes sur lesquelles passent une unité). Le coût de cette solution est 4−|M|. Donc minimiser ce coût revient à rechercher un couplage de taille max.

Voilà une solution arborescente optimale du réseau; on a indiqué sur les sommets les prix relatifs, et sur les arêtes les quantités transportées:



La taille maximale d’un couplage M est donc 3.

On remarque que les sommets du graphe biparti de prix 1 à gauche et de prix 0 à droite (en grisé) forment une couverture optimale de taille 3 du graphe biparti.

Problème 44   Est-ce une coïncidence?
Exercice 45   Soit T une solution arborescente optimale pour le réseau associé à un graphe biparti quelconque. On définit M et C comme ci-dessus.
  1. Vérifier que si ij est une arête du graphe biparti, et si iC, alors jC.
  2. En déduire que C est une couverture du graphe biparti.
  3. Vérifier que si i est dans C, alors i appartient à une des arêtes du couplage M.
  4. Vérifier que si ij est une des arêtes du couplage M, alors i et j ne sont pas simultanément dans C.
  5. En déduire que |M|=|C|.












Théorème 46   (König-Egerváry) Dans tout graphe biparti, la taille d’un couplage maximal est égale à la taille d’une couverture minimale.

C’est une exemple typique où le théorème de dualité de la programmation linéaire donne un théorème min-max reliant deux problèmes combinatoires qui ne sont pas clairement reliés a priori.

1.9  Problèmes de transports avec limites de capacités

Exemple 14   Modéliser un réseau routier par un réseau de transport sous forme standard n’est pas très réaliste: sur une autoroute donnée, on ne peut pas faire passer autant de camions que l’on veut !

Dans cette section, nous allons regarder une généralisation des problèmes de transports, dans lesquels on ajoutera des contraintes de capacités maximales.

Nous verrons rapidement que l’algorithme du simplexe et les résultats théoriques en découlant peuvent être étendus sans grosses difficultés. Puis nous étudierons quelques applications.

Définition 12   Problème de transport avec limites de capacités sous forme standard:

Minimiser: cx

Sous les contraintes: Ax=b et 0≤ xu,

A est la matrice d’incidence d’un réseau.

(u pour upper bound).

Exercice 21   Peut-on mettre le problème suivant sous forme standard ?

Minimiser: cx

Sous les contraintes: Ax=b et lxu.












Exercice 22   Donner une solution optimale pour le problème suivant:


.













Comme on peut le constater dans l’exercice précédent, on ne peut pas toujours espérer trouver une solution optimale, ni même une solution faisable arborescente: c’est-à-dire telle qu’on utilise aucune arête en dehors d’un certain arbre T.

On va donc relâcher cette contrainte. Toute arête en dehors de l’arbre T devra être soit non utilisée, soit au contraire utilisée à pleine capacité:

Définition 13   Soit T un arbre couvrant du réseau.

Une solution x est T-arborescente si tout arc ijT on a:

xij=0 ou xij=uij.

Une solution x est arborescente s’il existe un arbre couvrant T tel que x est T-arborescente.

Exercice 23   Donner une solution arborescente au problème précédent.












Exercice 24   Étant donné un arbre T, a-t’on unicité de la solution arborescente vis-à-vis de cet arbre ?












Exercice 25   Montrer que si les bi et les uij sont entiers, alors toute solution arborescente est entière.












Nous allons maintenant voir sur un exemple comment on peut adapter l’algorithme du simplexe pour les réseaux.

Dans le cas classique (sans limites de capacités), le principe était de faire rentrer dans l’arbre T une arête ij inutilisée (xij=0) rentable (yi+cij<yj) de façon à pouvoir l’utiliser.

Ici, il y a un autre cas de figure: faire rentrer une arrête ij utilisée à pleine capacité (xij=uij) alors qu’elle n’est pas rentable (yi+cij>yj), de façon à pouvoir diminuer son utilisation.

Exemple 47   Cf. [1, p.356-359].
Théorème 14   Soit x une solution T-arborescente telle que pour toute arête ij en dehors de l’arbre, on ait: Alors x est une solution optimale.

Proof. La démonstration est très similaire à celle du cas sans limites de capacités.

On va considérer une autre solution faisable x du problème, et comparer les coûts cx et cx correspondants.

On pose cij:=cij−(yjyi), et c=[cij] le vecteur ligne correspondant.

cij mesure le coût relatif:

On note que dans les trois cas, cijxijcijxij. Donc matriciellement cxcx.

Comme précédemment on peut écrire c matriciellement sous la forme c=cyA.

De plus, x et x sont solutions faisables et vérifient donc toutes deux Ax=b.

On en déduit alors:

c
x
=
c
x
+yA
x
=
c
x
+yb
c
x+yb=
c
x+yAx=cx.


1.10  Problèmes de flot maximum

1.10.1  Introduction

Définition 14   Problème de flot max:

Objectif:

Maximiser le volume du flot, c’est-à-dire la quantité transportée entre s et p.

Exemple 15   Un dimanche soir, maximiser le nombre de voitures allant d’Albertville à Lyon, en les répartissant entre les différentes routes possibles.
Exercice 26   Mettre le problème de flot dessiné ci-dessus sous forme de problème de transport standard avec limites de capacités












Clairement, cela se généralise à tout problème de flot max.

Problème 13   Que peut-on en déduire ?












1.10.2  Dualité: le théorème flot max / coupe min

Définition 15   Une coupe C dans un réseau est un ensemble de sommets du réseau contenant la source.

La capacité de la coupe C est la somme des capacités des arrêtes sortantes de C.

Exemple 16   Dans notre réseau, la coupe C={s} est de capacité 5.

Exercice 27   Quelle est la capacité de la coupe C={s,i2,i3}?

Que peut-on en déduire sur la valeur d’un flot ?












Proposition 7   Pour toute coupe C et tout flot F dans un réseau, la capacité |C| de la coupe est supérieure au volume |F| du flot: |C|≥|F|.
Problème 14   Que peut on espérer avoir ?












Une dualité et un théorème min-max, bien-sûr!

Théorème 15   (Coupe min-Flot max) Dans un réseau, le volume maximal d’un flot est égal à la capacité minimale d’une coupe.
Exercice 28   Vérifiez-le dans notre exemple.

Proof. On considère une solution F optimale du problème de flot obtenue avec le simplexe pour les réseaux avec limites de capacité.

On calcule les valeurs yi en chaque sommets.

Les coûts sont de 0 partout sauf sur l’arc ps, où le coût est de −1.

Donc la valeur de yi est:

On prend comme coupe C l’ensemble des sommets i avec yi=0.

Chaque arc ij sortant de C est «rentable» puisque yi+cij=0<1=yj.

Or, ij n’est pas dans l’arbre, et le flot est optimal.

Donc ij doit être utilisé à pleine capacité: xij=uij.

De même, tout arc ij entrant est non rentable, et n’est donc pas utilisé: xij=0.

Conclusion: Le volume du flot F est égal à la capacité de la coupe C:


F
=
 
ij sortant
xij
 
ij entrant
xij=
 
ij sortant
uij=
C
.


Remarque 6   Il y a quelques boulons à serrer.
  1. Le simplexe pourrait terminer en indiquant que le problème est non borné: i.e. il existe des flots de volume aussi grand que l’on veut:



    Dans ce cas, il ne peut pas y avoir de coupe de capacité finie.

    Donc le théorème reste valide.

  2. Le simplexe pourrait indiquer que le problème est non faisable.

    En fait, non, puisque xij=0, ∀ xij est solution.

  3. Si le flot max est de volume 0, il se pourrait que l’arbre ne contienne pas l’arc ps. Du coup, l’ensemble des sommets i tels que yi=0 ne serait pas forcément une coupe.

    Un tel cas correspond en fait à une solution dégénérée qui est arborescente vis-à-vis de plusieurs arbres.

    En fait, en faisant un pivot convenable, on peut toujours remettre ps dans l’arbre.

1.10.3  Applications

On a vu que les problèmes de flots était un cas particulier des problèmes de transport avec limites de capacités.

Quel est donc l’intérêt de considérer les problèmes de flots ?

On a un algorithme (méthode du chemin augmentant) plus rapide que le simplexe.

Trouver une solution faisable dans un problème de transport avec limites de capacités

Exemple 17   On prend le problème de transport suivant, et on se demande s’il est faisable.



On peut le transformer en problème de flot, en oubliant les coûts, et en rajoutant une source, reliée convenablement aux producteurs, et un puits, relié convenablement aux consommateurs:



S’il existe un flot de volume 8, les arcs reliant s aux producteurs seront utilisés à pleine capacité, et de même pour les arcs reliant les consommateurs à t. Cela simule exactement les productions et consommations escomptées, donc le problème de réseau d’origine est faisable.

La réciproque est aussi clairement vraie: si le problème est faisable, alors il existe un flot de volume 8.

Dans notre cas, on en déduit que le problème n’est pas faisable. En effet, on peut trouver une coupe de capacité 7.

De manière générale, on peut toujours transformer un problème de transport avec limite de capacité en un problème de flot, de façon à déterminer s’il est faisable.

Cela donne un algorithme plus rapide que le simplexe pour la phase I de la résolution.

Couplages dans les graphes bipartis

Exercice 29   Mettre sous forme de problème de flot le problème de rechercher un couplage max dans le graphe biparti suivant.


Problème des mines à ciel ouvert

Problème 15   Des études géologiques ont permis de déterminer précisément la nature du sous-sol, et l’emplacement des gisements orifères à l’endroit ou l’on a décidé de creuser une mine à ciel ouvert. Certains gisements sont profonds, et il n’est pas clair qu’il soit rentable d’excaver tout le sol au-dessus pour y accéder.

Modèle: le sous-sol a été délimité en un certain nombre de blocs. Pour chaque bloc i, on connaît le coût Ci d’excavation, et le profit Pi que l’on peut escompter de son traitement.

Au final, on associe à chaque bloc i la quantité wi=CiPi. Si l’on ne considère pas les autres blocs, il est rentable de creuser i si et seulement si wi<0.

On veut déterminer quels blocs on doit creuser pour maximiser le profit total −∑iwi (ou autrement dit minimiser iwi).

Maintenant, il y a des contraintes supplémentaires: si un bloc i est sous un bloc j, on ne peux pas creuser i sans creuser j!

On introduit un ordre partiel, de sorte que i<j si pour creuser i on doit creuser j.

Comme on le verra, la forme des blocs, et le type d’ordre partiel n’est pas relevant.

Exemple 18   On considère le sous-sol suivant:

Comment modéliser notre problème sous forme de problème de flot max ?

La modélisation des contraintes de précédences est un peu astucieuse!

On introduit le réseau suivant:

C’est la remarque suivante qui va faire marcher la machine:

Remarque 7   Soit C une coupe.

S’il existe deux blocs i<j, avec iC et jC, alors C est de capacité infinie.

La réciproque est vraie.

Les coupes de capacité finie sont en correspondance avec les coupes respectant les contraintes.

Maintenant, on peut vérifier que la capacité d’une coupe finie vaut exactement

 
i∈ C, i bloc non rentable
wi
 
iC, i bloc rentable
wi.

Quitte à rajouter le terme constant ∑i, i blocwi, on est en train de calculer le profit lorsque l’on enlève les blocs i avec iC.

Résumé: Soit I un ensemble de blocs, et C la coupe {s}∪ I.

Maximiser le profit revient à trouver une coupe min.

Remarque 8   En termes pédants: on peut résoudre par un algorithme de flot le problème de trouver une section finale de poids minimal dans un ordre partiel.

Dualités chaînes/antichaînes dans les ordres partiels; théorème de Dilworth

Problème 48   [1, p. 338] Problème des visites guidées. Une compagnie propose 7 visites guidées dans la journée, notées a,b,c,d,e,f,g, dont les horaires et durées sont fixées. Si une visite (par ex. a) termine suffisament avant une autre (par exemple c), le guide de la première visite peut enchaîner sur la deuxième; on notera alors ac. En l’occurence, voici tous les enchaînements possibles:

ac, ad, af, ag, bc, bg, dg, ef, eg.












Définition 16   Soit P=(E,<) un ordre partiel.

Une chaîne C de P est un ensemble de sommets de P deux à-deux comparables:

x∈ C et y∈ Cx<y ou y<x.

Une antichaîne A de P est un ensemble de sommets deux-à-deux incomparables.

Une couverture en chaînes de P est un ensemble C1,…,Ck de chaînes, de sorte que tout sommet de P est dans une unique chaîne Ci.

Une couverture en antichaînes de P est un ensemble A1,…,Ak d’antichaînes, de sorte que tout sommet de P est dans une unique antichaîne Ai.

Exercice 49   Trouver dans l’ordre partiel P précédent:
  1. Une chaîne de taille maximale
  2. Une antichaîne de taille maximale
  3. Une couverture en chaînes de P de taille minimale
  4. Une couverture en antichaînes de P de taille minimale
Que remarquez vous ?












Y-aurait-il un théorème min-max reliant la taille de la plus grande chaîne et la taille de la plus petite couverture en antichaînes ? Et un autre reliant la taille de la plus grande antichaîne et celle de la plus petite couverture en chaînes ?

Exercice 50   Soit P un ordre partiel quelconque.
  1. Soit C une chaîne de P et A1,…,Ak une couverture de P en antichaînes.

    Montrer que |C|≤ k.

  2. Soit A une antichaîne de P et C1,…,Ck une couverture de P en chaînes.

    Montrer que |A|≤ k.

Proposition 51   Soit P un ordre partiel. La taille de la plus grande chaîne de P est égale à la taille de la plus petite couverture en antichaînes de P.
Exercice 52   Prouvez-le!












Le théorème dans l’autre sens est plus difficile et bien plus profond. Il n’y a pas de construction élémentaire de l’antichaîne et de la couverture en chaîne idoine. On va en fait se ramener à la programation linéaire (surprise).

Théorème 53   (Dilworth) Soit P un ordre partiel. La taille de la plus grande antichaîne de P est égale à la taille de la plus petite couverture en chaînes de P.

Proof. On note n le nombre de sommets de P.

Choisir une couverture en chaîne de P est équivalent à sélectionner un certain nombre d’arcs dans P, de sorte que chaque sommet ait au plus un arc sortant de sélectionné, et un arc rentrant de sélectionné.

Remarque: s’il y a k chaînes, il y a nk arcs sélectionnés.

Cela ressemble à un problème de couplage maximal dans un graphe biparti.

On construit un graphe biparti B dans lequel chaque sommet x de P est dupliqué en (x,1) et (x,2).

Chaque fois que x<y dans P, on relie (x,1) et (y,2).

Qu’est-ce qu’un couplage dans B?

Un ensemble d’arcs de P vérifiant exactement les conditions voulues.

Une couverture de P en k chaînes correspond à un couplage de B de taille nk.

Prenons une couverture de P de taille k minimale.

Cela donne un couplage de taille max nk de B.

Le théorème min-max pour les graphes bipartis indique qu’il y a une couverture de B de même taille: nk sommets de B qui touchent tous les arcs.

Dans P cela correspond à au plus nk sommets qui touchent tous les arcs.

Soit A l’ensemble des sommets restants qui est de taille au moins k.

Il ne peut pas y avoir d’arcs entre deux sommets de A.

Conclusion: A est une antichaîne de taille au moins k.


Exercice 54   Suivez le déroulement de la preuve sur l’ordre partiel précédent

1.10.4  La méthode du chemin augmentant

Rechercher un couplage max dans un graphe biparti est un problème très classique.

Il existe en fait des techniques plus rapides que les algorithmes de réseaux de transport.

L’une d’entre elles est la méthode du chemin augmentant.

Cas général des graphes simples

Exemple 55   Couplage de taille maximale dans le chemin P6.

On peut construire un couplage de taille maximal progressivement à partir d’un couplage vide en rajoutant des arêtes une à une. Mais si on n’est pas parti correctement, on risque d’être bloqué avec un couplage qui est maximal, alors qu’il n’est pas de taille maximale. Il faut appliquer une transformation au couplage pour pouvoir l’agrandir.

Définition 56   Soit M un couplage dans un graphe G.

Un sommet M-saturé (ou saturé) est un sommet touchant une arête du couplage.

Un chemin M-alterné de G est un chemin de G qui utilise alternativement des arêtes dans M et hors de M.

Un chemin M-augmentant est un chemin M-alterné commençant et finissant par des sommets non M-saturés.

Exemple 57   Regardons ce que cela donne avec le couplage suivant:



Remarque 9   Si M est un couplage, et C est un chemin M-augmentant, alors on peut construire un couplage M strictement plus grand en utilisant C.

Cas particulier: lorsque le chemin M-augmentant consiste d’une seule arête reliant deux sommets non saturés, on est ramené au rajout d’une arête au couplage M.

Exercice 30   Soit G le graphe



Le couplage M dessiné est maximal, mais pas de taille maximale. Trouvez un chemin M-augmentant et construisez le couplage M correspondant.

Est-ce que cette opération de chemin augmentant est suffisante ?

Théorème 16   (Berge 1957) Un couplage M est de taille maximale si et seulement s’il n’y a pas de chemin M-augmentant.

Proof. Soit M un couplage, comme dans l’exemple suivant:



On suppose qu’il existe un couplage M′ de taille strictement plus grande.



On va construire un chemin M-augmentant.

On considère le graphe H obtenu par réunion de M et M′.

Les sommets de H sont de degré au plus 2.

Ses composantes connexes sont donc des doubles arêtes ou des cycles et chemins dont les arêtes alternent entre M et M′. Dans un cycle ou une double arête il y a autant d’arêtes de M que de M′. Il y aura donc forcément un chemin qui contiendra une arête de plus de M′ que de M. Ce chemin est un chemin M-augmentant.


On déduit de ce théorème un algorithme (ou plutôt une méthode):

Algorithme 58   Recherche d’un couplage maximal dans un graphe:
  1. Partir d’un couplage M quelconque (par exemple le couplage vide);
  2. Chercher un chemin M-augmentant;
  3. S’il n’y en a pas, renvoyer M qui est maximal; sinon réitérer avec M:=M′.
Exercice 31   Appliquez cette méthode pour trouver un couplage maximal du graphe



Pour un graphe quelconque, l’étape 2 peut être difficile!

Par contre, pour un graphe biparti, il y a un algorithme.

Recherche d’un chemin augmentant pour un couplage d’un graphe biparti

Exemple 19   On va rechercher un couplage maximal dans le graphe biparti précédent, en montrant comment on peut trouver de manière systématique un chemin M-augmentant.
Algorithme 59   Soit M un couplage d’un graphe biparti B entre les parties X et Y.

Cet algorithme renvoie soit un chemin M-augmentant, soit une couverture du graphe de taille |M|, ce qui indiquera que le couplage M est de taille maximale.

Soit U l’ensemble des sommets de X non touchés par M, et V l’ensemble des sommets de Y non touchés par M.

On va rechercher par un parcours en largeur les chemins M-alternés allant de U à V.

S (resp. T) va représenter l’ensemble des sommets x de X (resp. Y) pour lesquels on aura déjà trouvé un chemin M-alterné allant de U à x.

Initialisation:
S:=U, T:=∅;
Itération:
 
Cas 1:
Il y a une arête reliant un sommet de S à un sommet de V. Cela donne un chemin M-augmentant que l’on renvoie
Cas 2:
Il y a une arête reliant un sommet x de S à un sommet y de YV avec xy∉¬M. Ce sommet est relié par une arête du couplage à un sommet w de X. Comme y et w sont reliés à U par un chemin M-alterné, on rajoute y à T et w à S.
Cas 3:
T∪(XS) est une couverture de taille |M| du graphe (vérifiez le!) que l’on renvoie.
Exercice 60   Appliquer l’algorithme sur un graphe biparti de votre choix

Démontrer que T∪(XS) est bien une couverture de taille |M| du graphe.

Donner la preuve

1.10.5  Algorithme de Ford-Fulkerson

La méthode du chemin augmentant se généralise à la recherche de couplage max dans un graphe biparti valué, et en fait aussi aux problèmes de flots max. On ne va regarder son fonctionnement que sur un exemple, et on renvoie à [1, p. 369] pour les détails.

Exemple 20   On veut transporter le plus grand nombre possible de voyageurs de San-Francisco à New-York, sachant qu’il ne reste que quelques places dans les avions entre les villes suivantes:



Définition 17   Soit R un réseau, et F un flot donné dans ce réseau.

Un chemin allant de la source s au puits p est F-augmentant si pour chaque arête ij du chemin on a:

À partir d’un chemin F-augmentant, on peut construire un nouveau flot F′ qui sera de volume strictement plus gros.

Le principe de l’algorithme de Ford-Fulkerson est de partir d’un flot F quelconque, et de l’améliorer itérativement en recherchant des chemins F-augmentant.

À chaque étape, la recherche d’un chemin F-augmentant se fait par un parcours en profondeur, de manière similaire à la recherche d’un chemin M-augmentant dans un graphe biparti. Si cette recherche échoue, elle dévoile une coupe de capacité égale au flot, ce qui donne un certificat d’optimalité du flot.

Remarque 10   On peut toujours initialiser l’algorithme avec un flot nul.

Si toutes les capacités sont entières et finies, chaque itération augmente le flot d’au moins 1. Cet algorithme ne peut donc pas cycler, et il termine en un nombre fini d’étapes.

Avec une mauvaise stratégie, et des capacités infinies ou non-entières, l’algorithme peut ne pas terminer.



Avec une stratégie convenable, cet algorithme est en fait polynomial, en O(n3), même si les capacités sont infinies ou non entières.

Pour les réseaux avec peu d’arcs, il y a des algorithmes plus compliqués qui permettent d’obtenir d’encore meilleurs bornes. Cf. [1, p. 369] pour les détails.

1.11  Méthodes alternatives au simplexe

Pour conclure ce chapitre sur la programmation linéaire, nous présentons rapidement quelques méthodes alternatives qui ont été développées pour résoudre les problèmes de programmation linéaire généraux. Nous nous contentons d’évoquer leur principe, leurs avantages et inconvénients, et donnons des références pour ceux qui voudraient en savoir plus.

1.11.1  Méthode de l’ellipsoïde

Principe
On commence par utiliser la dualité pour se ramener à la recherche d’une solution faisable d’un système d’inéquations linéaires. On peut en fait se ramener par une perturbation convenable à la recherche d’une solution faisable d’un système d’inéquations linéaires strictes!

Si un tel système est faisable, le volume de l’ensemble des solutions peut alors être minoré par une quantité V qui dépends de la dimension de l’espace, et de la taille des coefficients dans le système linéaire.

On part d’un ellipsoïde E suffisamment gros pour contenir toutes les solutions faisables.

Si le centre de E est une solution faisable, on a terminé.

Sinon, on peut couper l’ellipsoïde en deux, et inclure ce demi-ellispoïde dans un ellipsoïde E′ qui contient encore toutes les solutions faisables. On réitère avec E:=E′.

À chaque itération, on a V(E′)<α V(E), où α<1 est une constante qui ne dépends que de la dimension; donc le volume de E décroît exponentiellement. Au bout d’un petit nombre d’itérations, si l’on a pas obtenu de solution faisable, on a V(E)<V, ce qui prouve que la système n’a pas de solution faisable.

Avantages
 
Inconvénients
 
Référence
[1, p. 443]

1.11.2  Méthode des points intérieurs

Principe
Cette méthode est l’antithèse exacte du simplexe.

Le principe du simplexe est de ne considérer que des solutions basiques qui sont à la frontière du polyèdre, et d’utiliser de l’algèbre linéaire pour itérer parmi ces solutions.

Ici au contraire, la méthode ne considère que des solutions strictement à l’intérieur du polyèdre. L’idée est d’approximer les inégalités du système linéaire, qui forment fondamentalement des discontinuités, en barrières de potentiel, qui sont elles continues. Du coup, on peut utiliser les techniques d’optimisation non-linéaire continue, comme les méthodes de gradients.

Avantages
 
Inconvénients
 
Références
[2]

Références

[1]
V. Chvatal. Linear Programming.
[2]
R. Vanderbie. Linear Programming; Foundations and Extensions. http://www.princeton.edu/ rvdb/LPbook/index.html
[3]
Linear Programming FAQ http://rutcor.rutgers.edu/ mnk/lp-faq.html
[4]
http://en.wikipedia.org/wiki/Linear_programming

Valid HTML 4.0! Previous: Rappels de complexitéRappels de complexité Up: Recherche opérationnelle et Optimisation DiscrèteRecherche opérationnelle et Optimisation Discrète Next: OrdonnancementOrdonnancement
Programmation Linéaire / UCBL, Maîtrise MIM, Recherche Opérationnelle / Nicolas M. Thiéry
Last modified: Tue Feb 16 16:25:29 2016